forked from Coding-Crashkurse/Langchain-Production-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinsert_data.py
27 lines (22 loc) · 877 Bytes
/
insert_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from dotenv import find_dotenv, load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.pgvector import PGVector
from langchain.document_loaders import DirectoryLoader, TextLoader
load_dotenv(find_dotenv())
embeddings = OpenAIEmbeddings()
loader = DirectoryLoader(
"./FAQ", glob="**/*.txt", loader_cls=TextLoader, show_progress=True
)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# PGVector needs the connection string to the database.
COLLECTION_NAME = "vectordb"
PGVector.from_documents(
docs,
embeddings,
collection_name=COLLECTION_NAME,
connection_string=CONNECTION_STRING
)