@@ -5630,14 +5630,14 @@ partial dictionary MLOpSupportLimits {
56305630 null);
56315631 let currentHidden = squeeze(
56325632 builder,
5633- builder.slice(hiddenState, [dir, 0, 0], [1, batchSize, hiddenSize]));
5633+ builder.slice(hiddenState, [dir, 0, 0], [1, batchSize, hiddenSize]), [0] );
56345634
56355635 for (let step = 0; step < steps; ++step) {
56365636 const slice =
56375637 (dir == 1 || direction == 'backward' ? steps - step - 1 : step);
56385638 const currentInput = squeeze(
56395639 builder,
5640- builder.slice(input, [slice, 0, 0], [1, batchSize, inputSize]));
5640+ builder.slice(input, [slice, 0, 0], [1, batchSize, inputSize]), [0] );
56415641
56425642 currentHidden = builder.gruCell(
56435643 currentInput,
@@ -7011,17 +7011,17 @@ partial dictionary MLOpSupportLimits {
70117011
70127012 let currentHidden = squeeze(
70137013 builder,
7014- builder.slice(hiddenState, [dir, 0, 0], [1, batchSize, hiddenSize]));
7014+ builder.slice(hiddenState, [dir, 0, 0], [1, batchSize, hiddenSize]), [0] );
70157015 let currentCell = squeeze(
70167016 builder,
7017- builder.slice(cellState, [dir, 0, 0], [1, batchSize, hiddenSize]));
7017+ builder.slice(cellState, [dir, 0, 0], [1, batchSize, hiddenSize]), [0] );
70187018
70197019 for (let step = 0; step < steps; ++step) {
70207020 const slice =
70217021 (dir == 1 || direction == 'backward' ? steps - step - 1 : step);
70227022 const currentInput = squeeze(
70237023 builder,
7024- builder.slice(input, [slice, 0, 0], [1, batchSize, inputSize]));
7024+ builder.slice(input, [slice, 0, 0], [1, batchSize, inputSize]), [0] );
70257025
70267026 [currentHidden, currentCell] = builder.lstmCell(
70277027 currentInput,
@@ -10466,7 +10466,7 @@ Operations present in other neural network inference APIs can often be emulated
1046610466 axes.push(i);
1046710467 });
1046810468 const shape = Array.from(input.shape);
10469- for (let axis in axes.sort().reverse())
10469+ for (let axis of axes.sort().reverse())
1047010470 if (axis < shape.length && shape[axis] == 1)
1047110471 shape.splice(axis, 1);
1047210472 return builder.reshape(input, shape);
@@ -10485,7 +10485,7 @@ Operations present in other neural network inference APIs can often be emulated
1048510485 <pre highlight="js">
1048610486 function unsqueeze(builder, input, axes) {
1048710487 const shape = Array.from(input.shape);
10488- for (let axis in axes.sort())
10488+ for (let axis of axes.sort())
1048910489 shape.splice(axis, 0, 1);
1049010490 return builder.reshape(input, shape);
1049110491 }
0 commit comments