forked from lboloni/WaterberryFarms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPathGenerators.py
310 lines (274 loc) · 12.8 KB
/
PathGenerators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import math
import numpy as np
def euclidean_distance(point1, point2):
"""Return the euclidian distance between two points"""
return math.sqrt(math.pow(point2[0]-point1[0],2) + math.pow(point2[1]-point1[1],2))
def get_path_length(starting_point, path):
"""Returns the length of the generated path, assuming that it starts at the starting point"""
if starting_point is None:
starting_point = path[0]
current = starting_point
length = 0
for a in path:
length += euclidean_distance(current, a)
current = a
return length
# These functions generate static paths in the form of a series of waypoints.
# A robot with the FollowPathPolicy will then follow these paths.
# ***************************************************
#
# Lotzi Bölöni's initial lawnmower implementation
#
# ***************************************************
def generate_lawnmower(x_min, x_max, y_min, y_max, winds):
"""Generates a horizontal lawnmower path on the list
author:: Lotzi Boloni"""
current = [x_min, y_min]
y_step = (y_max - y_min) / (2 * winds)
path = []
path.append(current)
for i in range(winds):
path.append([x_max, current[1]])
path.append([x_max, current[1]+y_step])
path.append([x_min, current[1]+y_step])
current = [x_min, current[1]+2 * y_step]
path.append(current)
path.append([x_max, current[1]])
return np.array(path)
def find_fixed_budget_lawnmower(starting_point, x_min, x_max, y_min, y_max, velocity, time):
"""Finds a lawnmower pattern that best covers the area given a certain budget of time and velocity by performing a binary search on the number of winds. Returns the path"""
windsmax = 1000
windsmin = 1
distancebudget = velocity * time
while windsmax > windsmin + 1:
windstest = (windsmin + windsmax) // 2
# print(windstest)
path = generate_lawnmower(x_min, x_max, y_min, y_max, winds = windstest)
length = get_path_length(starting_point, path)
if length > distancebudget:
windsmax = windstest
else:
windsmin = windstest
return path
# ***************************************************
#
# Sam Matloob's lawnmower implementation with control
# points version 1
#
# ***************************************************
def generate_lawnmower_with_control_points_v1(x_min, x_max, x_step, y_min, y_max, y_step, control_points, coverage_distance):
"""Generates a lawmower-like pattern with control points
author:: Sam Matloob (February 2022 ???)"""
control_points= sorted(control_points, key=lambda x: (x[1], x[0]), reverse= True)
noEpidemicPoints= len(control_points)
epidemicPointsToBeAdded=[]
path = []
direction=1
largestX=0.0
for y in np.arange(y_min, y_max+y_step, y_step):
if (direction==1):
for x in np.arange(x_min, x_max + x_step, x_step):
path.append([x, y])
while (y <= control_points[noEpidemicPoints-1][1] and x <= control_points[noEpidemicPoints-1][0] and \
y + y_step >= control_points[noEpidemicPoints-1][1] and x + x_step >= control_points[noEpidemicPoints-1][0]):
if (noEpidemicPoints!=0 and control_points_need_to_be_inserted((x,y), control_points[noEpidemicPoints-1], coverage_distance, x_step, y_step)):
epidemicPointsToBeAdded.append(control_points[noEpidemicPoints-1])
path.append(control_points[noEpidemicPoints - 1])
noEpidemicPoints=noEpidemicPoints-1
largestX=x
direction=-1
else:
for x in np.arange(largestX, x_min-x_step, -x_step):
path.append([x, y])
while (y <= control_points[noEpidemicPoints - 1][1] and x <= control_points[noEpidemicPoints - 1][0] and \
y + y_step >= control_points[noEpidemicPoints - 1][1] and x + x_step >=
control_points[noEpidemicPoints - 1][0]):
if (noEpidemicPoints!=0 and control_points_need_to_be_inserted((x,y), control_points[noEpidemicPoints-1], coverage_distance, x_step, y_step)):
epidemicPointsToBeAdded.append(control_points[noEpidemicPoints-1])
path.append(control_points[noEpidemicPoints - 1])
noEpidemicPoints=noEpidemicPoints-1
direction=1
return np.array(path)
def control_points_need_to_be_inserted(path_point, control_point, coverage_distance, x_step, y_step):
"""author Sam Matloob (February 2022?)"""
if (euclidean_distance(path_point, control_point) >= coverage_distance):
if (euclidean_distance((path_point[0] + x_step, path_point[1]), control_point) >= coverage_distance):
if (euclidean_distance((path_point[0], path_point[1] + y_step),
control_point) >= coverage_distance):
if (euclidean_distance((path_point[0] + x_step, path_point[1] + y_step),
control_point) >= coverage_distance):
return True
return False
# ***************************************************
#
# Sam Matloob's lawnmower implementation with control
# points version 2
#
# ***************************************************
def generate_lawnmower_path_v2(x_min, x_max, x_step, y_min, y_max, y_step):
"""
Sam Matloob's lawnmower implementation. The returned path will be modified for the control points
author Sam Matloob (February 2022?)"""
path = []
#if direction=1 then the path is going from left to right, if direction=-1 then the path is going from right to left
direction=1
# looping through y-axis
for y in np.arange(y_min, y_max+y_step, y_step):
if y>y_max:
continue
if (direction==1):
# looping through x-axis
for x in np.arange(x_min, x_max + x_step, x_step):
if x>x_max:
continue
path.append([x, y])
direction=-1
else:
for x in np.arange(path[-1][0], x_min-x_step, -x_step):
if x<x_min:
continue
path.append([x, y])
direction = 1
return path
def add_control_points_v2(lawnmower_path, control_points):
"""
Sam Matloob's lawnmower implementation. The returned path will be modified for the control points
author Sam Matloob (February 2022?)"""
# this method will add the control points to the lawnmower_path
# control_point_mapping is a dictionary variable that stores the lawnmower_path point as a key, while the value
# is a list of the closest control_points to the lawnmower_path point.
control_point_mapping={}
control_points = sorted(control_points, key=lambda x: (x[1], x[0]), reverse=False)
# looping through the control_points
for control_point in control_points:
minDistance= [lawnmower_path[0], float('inf')]
prevLawnmowerPoint=[-1,-1]
direction=1
# looping through the lawnmower_path and check which point in that path is the closest to the control point
for lawnmowerPoint in lawnmower_path:
if (prevLawnmowerPoint!=[-1,-1] and lawnmowerPoint[1]!=prevLawnmowerPoint[1]):
direction= direction*-1
dist= euclidean_distance(lawnmowerPoint, control_point)
if (minDistance[1]> dist):
if (lawnmowerPoint[1]!=prevLawnmowerPoint[1] or direction*(control_point[0] - lawnmowerPoint[0])>=0):
minDistance = [lawnmowerPoint, dist]
else:
minDistance = [prevLawnmowerPoint, dist]
prevLawnmowerPoint= lawnmowerPoint
if (str(minDistance[0]) in control_point_mapping):
control_point_mapping[str(minDistance[0])].append(control_point)
else:
control_point_mapping[str(minDistance[0])] = [control_point]
finalPath=[]
# the following loop will insert all control points to the lawnmower_point using the dictionary variable "control_point_mapping"
# that was built above
for lawnmowerPoint in lawnmower_path:
finalPath.append(lawnmowerPoint)
if str(lawnmowerPoint) in control_point_mapping:
# I initially thought I will need to sort the list of points here closest to farthest from the lawnmower point
# But, I think sorting is not needed since I'm already sorting the control points above.
#sorted(control_point_mapping[str(lawnmowerPoint)], key= lambda x: euclidean_distance((float(str(lawnmowerPoint).split('[')[1].split(',')[0]), float(str(lawnmowerPoint).split(',')[1].split(']')[0])), x))
for epidemicPointMapping in control_point_mapping[str(lawnmowerPoint)]:
finalPath.append(list(epidemicPointMapping))
return finalPath
def find_fixed_budget_lawnmower_v2(control_points, starting_point, x_min, x_max, y_min, y_max, velocity, time):
"""Finds a lawnmower pattern that best covers the area given a certain budget of time and velocity by performing a binary search on the number of winds. Returns the path"""
step_max = float(y_max-y_min)
step_min = 0.1
distancebudget = velocity * time
while step_max > step_min + 0.05: # 0.05 is the minimum vertical step
step_test = (step_min + step_max) / 2
pathWithNoControlPoints= generate_lawnmower_path_v2(x_min, x_max, 1, y_min, y_max, step_test)
pathWithControlPoints= add_control_points_v2(pathWithNoControlPoints, control_points)
path = np.array(pathWithControlPoints)
length = get_path_length(starting_point, path)
if length > distancebudget:
step_min = step_test
else:
step_max = step_test
return path
# ***************************************************
#
# Partha Datta spiral implementation
#
# ***************************************************
def generate_spiral_path_ParthaDatta(x_max, y_max, x_min, y_min):
"""Partha Datta's code April 25"""
y_max = abs(y_max)
y_min = abs(y_min)
x_max = abs(x_max)
x_min = abs(x_min)
current = [x_min, y_min]
path = []
#if (xmax > ymax) :
i=0
j=1
for i in range(x_max//2+1):
path.append([x_min+i, y_min+i])
path.append([x_min+i, y_max-i])
path.append([x_max-i,y_max-i])
path.append([x_max-i,y_min+i])
path.append([x_min+j, y_min+i])
j+=1
return path
# ***************************************************
#
# Lotzi's implementation for a square spiral path
#
# ***************************************************
def generate_spiral_path(x_min, x_max, y_min, y_max, step = 1):
"""A square spiral coverage of a rectangular area with a specific step size"""
center_x = (x_min + x_max) // 2
center_y = (y_min + y_max) // 2
cur_x_min = x_min
cur_x_max = x_max
cur_y_min = y_min
cur_y_max = y_max
cur_x = x_min
cur_y = y_min
phase = 0
path = []
done = False
while not done:
if phase == 0:
cur_x = cur_x_min
cur_y = cur_y_min
cur_x_min = cur_x_min + step
if cur_x_min > center_x:
done = True
if phase == 1:
cur_x = cur_x_max
cur_y = cur_y_min
cur_y_min = cur_y_min + step
if cur_y_min > center_y:
done = True
if phase == 2:
cur_x = cur_x_max
cur_y = cur_y_max
cur_x_max = cur_x_max - step
if cur_x_max < center_x:
done = True
if phase == 3:
cur_x = cur_x_min
cur_y = cur_y_max
# only here??
cur_y_max = cur_y_max - step
if cur_y_max < center_y:
done = True
phase = (phase + 1) % 4
path.append([cur_x, cur_y])
return np.array(path)
def find_fixed_budget_spiral(starting_point, x_min, x_max, y_min, y_max, velocity, time):
"""Finds a spiral pattern that best covers the area given a certain budget of time and velocity by performing a binary search on the number of winds. Returns the path"""
step_max = 1000.0
step_min = 1.0
distancebudget = velocity * time
while step_max > step_min + 1:
step_test = (step_min + step_max) / 2
path = generate_spiral_path(x_min, x_max, y_min, y_max, step = step_test)
length = get_path_length(starting_point, path)
if length > distancebudget:
step_min = step_test
else:
step_max = step_test
return path