forked from lboloni/WaterberryFarms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWbfExperiment.py
367 lines (332 loc) · 14.9 KB
/
WbfExperiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# Waterberry Farms Experiments: functions helping to run experiments
# with the Waterberry Farms benchmark
from Environment import Environment, EpidemicSpreadEnvironment, DissipationModelEnvironment, PrecalculatedEnvironment
from InformationModel import StoredObservationIM, GaussianProcessScalarFieldIM, DiskEstimateScalarFieldIM, im_score, im_score_weighted
from Robot import Robot
from Policy import GoToLocationPolicy, FollowPathPolicy, RandomWaypointPolicy, \
AbstractWaypointPolicy
from PathGenerators import find_fixed_budget_spiral, generate_lawnmower, find_fixed_budget_lawnmower, generate_spiral_path, find_fixed_budget_spiral
from WaterberryFarm import create_wbfe, WaterberryFarm, MiniberryFarm, WaterberryFarmInformationModel, WBF_MultiScore
import numpy as np
import pathlib
import logging
import pickle
import copy
import time
#import bz2 as compress
import gzip as compress
# logging.basicConfig(level=logging.WARNING)
logging.basicConfig(level=logging.INFO)
logging.getLogger().setLevel(logging.INFO)
def get_geometry(typename, geo = None):
"""Returns an object with the geometry for the different types (or adds it into the passed dictionary"""
if geo == None:
geo = {}
geo["velocity"] = 1
if typename == "Miniberry-10":
geo["xmin"], geo[
"xmax"], geo["ymin"], geo["ymax"] = 0, 10, 0, 10
geo["width"], geo["height"] = 11, 11
geo["timesteps-per-day"] = 0.4 * 100
elif typename == "Miniberry-30":
geo["xmin"], geo[
"xmax"], geo["ymin"], geo["ymax"] = 0, 30, 0, 30
geo["width"], geo["height"] = 31, 31
geo["timesteps-per-day"] = 0.4 * 900
elif typename == "Miniberry-100":
geo["xmin"], geo[
"xmax"], geo["ymin"], geo["ymax"] = 0, 100, 0, 100
geo["width"], geo["height"] = 101, 101
geo["timesteps-per-day"] = 0.4 * 10000
elif typename == "Waterberry":
geo["xmin"], geo[
"xmax"], geo["ymin"], geo["ymax"] = 1000, 5000, 1000, 4000
geo["width"], geo["height"] = 5001, 4001
geo["timesteps-per-day"] = 0.4 * 12000000
return geo
def menuGeometry(results):
"""Asks about the geometry and sets it in results"""
if "geometry" not in results:
print("Choose the geometry:")
print("\t1. Miniberry-10:")
print("\t2. Miniberry-30:")
print("\t3. Miniberry-100:")
print("\t4. Waterberry")
results["geometry"] = int(input("Choose desired geometry: "))
if results["geometry"] == 1 or results["geometry"] == "Miniberry-10":
results["typename"] = "Miniberry-10"
elif results["geometry"] == 2 or results["geometry"] == "Miniberry-30":
results["typename"] = "Miniberry-30"
elif results["geometry"] == 3 or results["geometry"] == "Miniberry-100":
results["typename"] = "Miniberry-100"
elif results["geometry"] == 4 or results["geometry"] == "Waterberry":
results["typename"] = "Waterberry"
else:
raise Exception(f"Unknown choice of geometry {results['geometry']}")
def menu_scenario(choices):
"""Interactively selecting the scenario and adding it into choices"""
print("Choose the experiment scenario")
print("\t1. Single day, static, TYLCV only")
print("\t2. Single day, static, multi-value")
print("\t3. 15 day, dynamic, TYLCV only")
print("\t4. 15 day, dynamic, multi-value")
choice = int(input("Choose desired experiment scenario: "))
if choice == 1:
choices["scenario"] = "one-day-single-value"
elif choice == 2:
choices["scenario"] = "one-day-multi-value"
elif choice == 3:
choices["scenario"] == "15-day-single-value"
elif choice == 4:
choices["scenario"] == "15-day-multi-value"
def action_precompute_environment(choices):
results = copy.deepcopy(choices)
results["action"] = "precompute-environment"
menuGeometry(results)
wbf, wbfe, savedir = create_wbfe(False, wbf_prec = None, typename = results["typename"])
results["wbf"] = wbf
results["wbfe"] = wbfe
results["savedir"] = savedir
if "precompute-time" in results:
for i in range(results["precompute-time"]):
logging.info(f"precalculation proceed {i}")
wbfe.proceed()
return results
def action_load_environment(choices):
results = copy.deepcopy(choices)
results["action"] = "load-environment"
menuGeometry(results)
wbf, wbfe, savedir = create_wbfe(True, wbf_prec = None, typename = results["typename"])
results["wbf"] = wbf
results["wbfe"] = wbfe
results["savedir"] = savedir
if "precompute-time" in results:
for i in range(results["precompute-time"]):
logging.info(f"precalculation proceed {i}")
wbfe.proceed()
return results
def action_visualize(choices):
results = copy.deepcopy(choices)
results["action"] = "visualize"
menuGeometry(results)
wbf, wbfe, savedir = create_wbfe(True, wbf_prec = None, typename = results["typename"])
results["wbf"] = wbf
results["wbfe"] = wbfe
results["savedir"] = savedir
timepoint = int(input("Timepoint for visualization:"))
wbfe.proceed(timepoint)
wbfe.visualize()
plt.show()
return results
def action_animate(choices):
results = copy.deepcopy(choices)
results["action"] = "visualize"
menuGeometry(results)
wbf, wbfe, savedir = create_wbfe(True, wbf_prec = None, typename = results["typename"])
wbfe.visualize()
anim = wbfe.animate_environment()
plt.show()
return results
def simulate_1day(results):
"""Runs the simulation for one day. All the parameters and output is in the results dictionary."""
wbfe, wbf = results["wbfe"], results["wbf"]
wbfim = results["estimator-code"]
# we are assigning here to the robot the information model
# FIXME: this might be more tricky later
results["robot"].im = wbfim
positions = []
observations = []
scores = []
results["scores"] = scores
results["observations"] = observations
results["positions"] = positions
results["computation-cost-policy"] = []
time_track_start = time.time_ns()
time_track_last_start = time_track_start
im_resolution_count = 0
for timestep in range(int(results["timesteps-per-day"])):
# print(f"Simulate_1day I am at time = {time}")
time_policy_start = time.time_ns()
results["robot"].enact_policy()
results["robot"].proceed(1)
position = [int(results["robot"].x), int(results["robot"].y), timestep]
# print(results["robot"])
positions.append(position)
obs = wbfe.get_observation(position)
observations.append(obs)
wbfim.add_observation(obs)
results["robot"].add_observation(obs)
time_policy_finish = time.time_ns()
results["computation-cost-policy"].append(time_policy_finish - time_policy_start)
# update the im and the score at every im_resolution steps and at the last iteration
im_resolution_count += 1
if im_resolution_count == results["im_resolution"] or timestep + 1 == results["timesteps-per-day"]:
wbfim.proceed(results["im_resolution"])
score = results["score-code"].score(wbfe, wbfim)
for i in range(im_resolution_count):
scores.append(score)
im_resolution_count = 0
if "hook-after-day" in results:
results["hook-after-day"](results)
# every 10 seconds, write out where we are
time_track_current = time.time_ns()
if (time_track_current - time_track_last_start) > 10e9:
print(f"At {timestep} / {int(results['timesteps-per-day'])} elapsed {int((time_track_current - time_track_start) / 1e9)} seconds")
time_track_last_start = time_track_current
results["score"] = score
def action_run_oneday(choices):
results = copy.deepcopy(choices)
results["action"] = "run-one-day"
if "im_resolution" not in results:
results["im_resolution"] = 1
menuGeometry(results)
if "time-start-environment" not in results:
results["time-start-environment"] = int(input("Time in the environment when the robot starts: "))
wbf, wbfe, savedir = create_wbfe(saved=True, wbf_prec=None, typename = results["typename"])
wbfe.proceed(results["time-start-environment"])
results["wbf"] = wbf
results["wbfe"] = wbfe
results["savedir"] = savedir
results["exp-name"] = results["typename"] + "_" # name of the exp., also dir to save data
results["days"] = 1
results["exp-name"] = results["exp-name"] + "1M_"
get_geometry(results["typename"], results)
# override the velocity and the timesteps per day, if specified
if "timesteps-per-day-override" in results:
results["timesteps-per-day"] = results["timesteps-per-day-override"]
if "velocity-override" in results:
results["velocity"] = results["velocity-override"]
results["robot"] = Robot("Rob", 0, 0, 0, env=None, im=None)
# Setting the policy
results["exp-name"] = results["exp-name"] + results["policy-name"]
results["robot"].assign_policy(results["policy-code"])
if "results-filename" in results:
results_filename = results["results-filename"]
else:
results_filename = f"res_{results['exp-name']}"
if "results-basedir" in results:
results_path = pathlib.Path(results["results-basedir"], results_filename)
else:
results_path = pathlib.Path(results["savedir"], results_filename)
results["results-path"] = results_path
# if dryrun is specified, we return the results without running anything
if "dryrun" in results and results["dryrun"] == True:
return results
# results["oneshot"] = False # calculate one observation score for all obs.
# running the simulation
simulate_1day(results)
#
logging.info(f"Saving results to: {results_path}")
with compress.open(results_path, "wb") as f:
pickle.dump(results, f)
return results
def simulate_15day(results):
"""Runs the simulation for 15 days. All the parameters and output is in the results dictionary"""
wbfe, wbf = results["wbfe"], results["wbf"]
wbfim = results["estimator-code"]
results["wbfim-days"] = {}
results["wbfim-days"][0] = copy.deepcopy(wbfim)
# keep the positions and remember the length to split by days
positions = []
positions_size_last = len(positions)
results["positions-days"] = {}
# keep the observations and remember the lenght to split by days
observations = []
observations_size_last = len(observations)
results["observations-days"] = {}
# keep the scores and remember the lenght to split by days
scores = []
scores_size_last = len(scores)
results["scores-days"] = {}
for day in range(1,16): # 1,2,...15 day zero is the beginning
print(f"day {day}")
elapsedCount = 0 # how many steps elapsed since we updated im
for time in range(int(results["timesteps-per-day"])):
results["robot"].enact_policy()
results["robot"].proceed(1)
position = [int(results["robot"].x), int(results["robot"].y), time]
positions.append(position)
obs = wbfe.get_observation(position)
observations.append(obs)
wbfim.add_observation(obs)
# determine if we perform the calculation and for how many days
# FIXME: debug this
performCount = 0
if time == 0: # first time
performCount = 1
elif elapsedCount % int(results["score-resolution"]) == 0:
performCount = elapsedCount
elapsedCount = 0
elif time == int(results["timesteps-per-day"])-1:
performCount = elapsedCount
elapsedCount = 0
## if performcount is not zero update it.
if performCount > 0:
wbfim.proceed(performCount)
score = results["score-code"].score(wbfe, wbfim)
for i in range(performCount):
scores.append(score)
elapsedCount += 1
# store the values at the end of the day
results["wbfe-days"][day] = copy.deepcopy(wbfe)
results["wbfim-days"][day] = copy.deepcopy(wbfim)
results["positions-days"][day] = positions[positions_size_last:]
positions_size_last = len(positions)
results["observations-days"][day] = observations[observations_size_last:]
observations_size_last = len(observations)
results["scores-days"][day] = scores[scores_size_last:]
scores_size_last = len(scores)
# move to the next day in the environment
wbfe.proceed(1)
# store in results the values at the end of scenario
results["score"] = score
results["scores"] = scores
results["observations"] = observations
results["positions"] = positions
def action_run_multiday(choices):
results = copy.deepcopy(choices)
results["action"] = "run-15-day"
menuGeometry(results)
if "time-start-environment" not in results:
results["time-start-environment"] = int(input("Time in the environment when the robot starts: "))
wbf, wbfe, savedir = create_wbfe(saved=True, wbf_prec=None, typename = results["typename"])
wbfe.proceed(results["time-start-environment"])
results["wbf"] = wbf
# wbfe will be the environment at the end of experiment
results["wbfe"] = wbfe
results["wbfe-days"] = {}
results["wbfe-days"][0] = copy.deepcopy(wbfe)
results["savedir"] = savedir
results["exp-name"] = results["typename"] + "_" # name of the exp., also dir to save data
results["days"] = 15
results["exp-name"] = results["exp-name"] + "1M_"
get_geometry(results["typename"], results)
# override the velocity and the timesteps per day, if specified
if "timesteps-per-day-override" in results:
results["timesteps-per-day"] = results["timesteps-per-day-override"]
if "velocity-override" in results:
results["velocity"] = results["velocity-override"]
results["robot"] = Robot("Rob", 0, 0, 0, env=None, im=None)
# Setting the policy
results["exp-name"] = results["exp-name"] + results["policy-name"]
results["robot"].assign_policy(results["policy-code"])
if "results-filename" in results:
results_filename = results["results-filename"]
else:
results_filename = f"res_{results['exp-name']}"
if "results-basedir" in results:
results_path = pathlib.Path(results["results-basedir"], results_filename)
else:
results_path = pathlib.Path(results["savedir"], results_filename)
results["results-path"] = results_path
# if dryrun is specified, we return the results without running anything
if "dryrun" in results and results["dryrun"] == True:
return results
results["oneshot"] = False # calculate one observation score for all obs.
# running the simulation
simulate_15day(results)
#
logging.info(f"Saving results to: {results_path}")
with compress.open(results_path, "wb") as f:
pickle.dump(results, f)
return results