forked from lboloni/WaterberryFarms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWbfFigures.py
439 lines (387 loc) · 20.6 KB
/
WbfFigures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# Waterberry Farm figures: functions helping to plot the results
# of experiments performed with the Waterberry Farms benchmark
from Environment import Environment, EpidemicSpreadEnvironment, DissipationModelEnvironment, PrecalculatedEnvironment
from InformationModel import StoredObservationIM, GaussianProcessScalarFieldIM, DiskEstimateScalarFieldIM, im_score, im_score_weighted
from Robot import Robot
from Policy import GoToLocationPolicy, FollowPathPolicy, RandomWaypointPolicy, \
AbstractWaypointPolicy
from PathGenerators import find_fixed_budget_spiral, generate_lawnmower, find_fixed_budget_lawnmower, generate_spiral_path, find_fixed_budget_spiral
from WaterberryFarm import create_wbfe, WaterberryFarm, MiniberryFarm, WaterberryFarmInformationModel, WBF_MultiScore
import numpy as np
import pathlib
import logging
import pickle
import copy
import time
import gzip as compress
from typing import List
import matplotlib
# configuring the fonts such that no Type 3 fonts are used
# requirement for ICRA
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
matplotlib.rcParams["figure.autolayout"] = True
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection
from matplotlib.path import Path
from matplotlib import animation
import matplotlib.lines as lines
logging.basicConfig(level=logging.INFO)
logging.getLogger().setLevel(logging.INFO)
def graph_robot_path_day(results, day, ax):
"""visualize the observations, which gives us the path of the robot"""
# FIXME: what about the positions?
wbfe = results["wbfe"]
empty = np.ones_like(wbfe.tylcv.value.T)
image_env_tylcv = ax.imshow(empty, vmin=0, vmax=1, origin="lower", cmap="gray")
ax.set_title("Robot path")
obsx = []
obsy = []
for obs in results["observations-days"][day]:
obsx.append(obs[StoredObservationIM.X])
obsy.append(obs[StoredObservationIM.Y])
old_obs = obs
ax.add_line(lines.Line2D(obsx, obsy, color="red"))
def graph_scores_per_day(results, ax):
"""Plot the scores on a one-a-day basis in the results of a multi-day experiment"""
# visualize the observations, which gives us the path of the robot
score_to_plot = []
days_to_plot = []
for day in range(1, 16):
scores = results["scores-days"][day]
score_to_plot.append(scores[-1])
days_to_plot.append(day)
ax.plot(days_to_plot, score_to_plot)
ax.set_ylim(top=0)
ax.set_xlabel("Days")
ax.set_title("Scores")
def graph_scores(results, ax, label = None):
"""Plot the scores, for the scores that return a single value"""
if label is None:
scores = results["scores"]
ax.set_title("Scores")
else:
scores = [a[label] for a in results["scores"]]
ax.set_title(f"Score {label}")
ax.plot(scores)
ax.set_ylim(top=0)
ax.set_xlabel("Time")
# ax_scores.set_ylabel("Score")
#
#
# From here: code for plotting the results
#
#
def graph_env_im(wbfe, wbfim, title_string = "{label}", ax_env_tylcv = None, ax_im_tylcv = None, ax_env_ccr = None, ax_im_ccr = None, ax_env_soil = None, ax_im_soil = None, ax_unc_tylcv = None, ax_unc_ccr = None, ax_unc_soil = None, cmap="gray"):
"""A generic function for plotting environments and their approximations into specific ax values. If an ax value is None, it will not plot."""
# visualize the environment for tylcv
if ax_env_tylcv != None:
image_env_tylcv = ax_env_tylcv.imshow(wbfe.tylcv.value.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "TYLCV Env."
evalstring = f"f'{title_string}'"
ax_env_tylcv.set_title(eval(evalstring))
# visualize the information model for tylcv
if ax_im_tylcv != None:
image_im_tylcv = ax_im_tylcv.imshow(wbfim.im_tylcv.value.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "TYLCV Estimate"
evalstring = f"f'{title_string}'"
ax_im_tylcv.set_title(eval(evalstring))
# visualize the uncertainty of the information model for tylcv
if ax_unc_tylcv != None:
image_unc_tylcv = ax_unc_tylcv.imshow(wbfim.im_tylcv.uncertainty.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "TYLCV Uncertainty"
evalstring = f"f'{title_string}'"
ax_unc_tylcv.set_title(eval(evalstring))
# visualize the environment for ccr
if ax_env_ccr != None:
image_env_ccr = ax_env_ccr.imshow(wbfe.ccr.value.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "CCR Env."
evalstring = f"f'{title_string}'"
ax_env_ccr.set_title(eval(evalstring))
# visualize the information model for ccr
if ax_im_ccr != None:
image_im_ccr = ax_im_ccr.imshow(wbfim.im_ccr.value.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "CCR Estimate"
evalstring = f"f'{title_string}'"
ax_im_ccr.set_title(eval(evalstring))
# visualize the uncertainty model for ccr
if ax_unc_ccr != None:
image_unc_ccr = ax_unc_ccr.imshow(wbfim.im_ccr.uncertainty.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "CCR Uncertainty"
evalstring = f"f'{title_string}'"
ax_unc_ccr.set_title(eval(evalstring))
# visualize the environment for soil humidity
if ax_env_soil != None:
image_env_soil = ax_env_soil.imshow(wbfe.soil.value.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "Soil Humidity Env."
evalstring = f"f'{title_string}'"
ax_env_soil.set_title(eval(evalstring))
# visualize the information model for soil humidity
if ax_im_soil != None:
image_im_soil = ax_im_soil.imshow(wbfim.im_soil.value.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "Soil Humidity Est."
evalstring = f"f'{title_string}'"
ax_im_soil.set_title(eval(evalstring))
# visualize the uncertainty model for soil humidity
if ax_unc_soil != None:
image_unc_soil = ax_unc_soil.imshow(wbfim.im_soil.uncertainty.T, vmin=0, vmax=1, origin="lower", cmap=cmap)
label = "Soil Humidity Unc."
evalstring = f"f'{title_string}'"
ax_unc_soil.set_title(eval(evalstring))
def add_robot_path_old(results, ax, draw_it = True, pathcolor="blue", robotcolor = "green", draw_robot = True):
"""Adds the path of the robot to the figure (or not if draw_it is not set)"""
if not draw_it:
return
obsx = []
obsy = []
for obs in results["observations"]:
obsx.append(obs[StoredObservationIM.X])
obsy.append(obs[StoredObservationIM.Y])
ax.add_line(lines.Line2D(obsx, obsy, color = pathcolor))
if draw_robot:
ax.add_patch(patches.Circle((results["robot"].x, results["robot"].y), radius=1, facecolor=robotcolor))
def add_robot_path(results, ax, draw_it = True, pathcolor="blue", pathwidth=1, robotcolor = "green", draw_robot = True, from_obs=-1, to_obs=-1):
"""Adds the path of the robot to the figure (or not if )"""
if not draw_it:
return
obsx = []
obsy = []
if from_obs == -1:
from_obs = 0
if to_obs == -1:
to_obs = len(results["observations"])
obses = results["observations"][from_obs:to_obs]
for obs in obses:
obsx.append(obs[StoredObservationIM.X])
obsy.append(obs[StoredObservationIM.Y])
ax.add_line(lines.Line2D(obsx, obsy, color = pathcolor, linewidth=pathwidth))
if draw_robot:
ax.add_patch(patches.Circle((results["robot"].x, results["robot"].y), radius=1, facecolor=robotcolor))
def end_of_day_graphs(results, graphfilename = "EndOfDayGraph.pdf", title = None, plot_uncertainty = True, ground_truth = "est+gt", score = None):
"""From the results of a 1 day experiment, create a figure that shows the
environment, the information model at the end of the scenario, the path of the robot and the evolution of the score
Ground truth = "est+gt", "est" or "gt"
"""
#print(results)
wbfe = results["wbfe"]
wbfim = results["estimator-code"]
if ground_truth == "est+gt": # estimate and ground truth inline
if plot_uncertainty:
fig, ((ax_robot_path, ax_env_tylcv, ax_im_tylcv, ax_unc_tylcv, ax_env_ccr, ax_im_ccr, ax_unc_ccr, ax_env_soil, ax_im_soil, ax_unc_soil, ax_scores)) = plt.subplots(1, 11, figsize=(24,3))
else:
fig, ((ax_robot_path, ax_env_tylcv, ax_im_tylcv, ax_env_ccr, ax_im_ccr, ax_env_soil, ax_im_soil, ax_scores)) = plt.subplots(1, 8, figsize=(18,3))
elif ground_truth == "est": # only estimate
if plot_uncertainty:
fig, ((ax_robot_path, ax_im_tylcv, ax_unc_tylcv, ax_im_ccr, ax_unc_ccr, ax_im_soil, ax_unc_soil, ax_scores)) = plt.subplots(1, 8, figsize=(18,3))
else:
fig, ((ax_robot_path, ax_im_tylcv, ax_im_ccr, ax_im_soil, ax_scores)) = plt.subplots(1, 5, figsize=(15,3))
elif ground_truth == "gt": # only environment
if plot_uncertainty:
fig, ((ax_empty1, ax_env_tylcv, ax_empty2, ax_env_ccr, ax_empty3, ax_env_soil, ax_empty4, ax_empty5)) = plt.subplots(1, 8, figsize=(18,3))
ax_empty1.axis('off')
ax_empty2.axis('off')
ax_empty3.axis('off')
ax_empty4.axis('off')
ax_empty5.axis('off')
else:
fig, ((ax_empty1, ax_env_tylcv, ax_env_ccr, ax_env_soil, ax_empty2)) = plt.subplots(1, 5, figsize=(15,3))
ax_empty1.axis('off')
ax_empty2.axis('off')
else:
raise f"Ground truth value {ground_truth} not understood"
if title is None:
fig.suptitle(f"{results['policy-name']}-{results['estimator-name']}", fontsize=16)
elif title != "":
fig.suptitle(title, fontsize=16)
# visualize the observations, which gives us the path of the robot
if ground_truth == "est+gt" or ground_truth == "est":
empty = np.ones_like(wbfe.tylcv.value.T)
image_env_tylcv = ax_robot_path.imshow(empty, vmin=0, vmax=1, origin="lower", cmap="gray")
ax_robot_path.set_title("Robot path")
add_robot_path(results, ax_robot_path, draw_robot = False)
graph_scores(results, ax_scores, score)
if ground_truth == "est+gt": # estimate and ground truth inline
if plot_uncertainty:
graph_env_im(wbfe, wbfim, ax_env_tylcv=ax_env_tylcv, ax_im_tylcv=ax_im_tylcv, ax_unc_tylcv = ax_unc_tylcv, ax_env_ccr=ax_env_ccr, ax_im_ccr=ax_im_ccr, ax_unc_ccr = ax_unc_ccr, ax_env_soil=ax_env_soil, ax_im_soil=ax_im_soil, ax_unc_soil = ax_unc_soil, title_string="{label}")
else:
graph_env_im(wbfe, wbfim, ax_env_tylcv=ax_env_tylcv, ax_im_tylcv=ax_im_tylcv, ax_env_ccr=ax_env_ccr, ax_im_ccr=ax_im_ccr, ax_env_soil=ax_env_soil, ax_im_soil=ax_im_soil, title_string="{label}")
elif ground_truth == "est": # only estimate
if plot_uncertainty:
graph_env_im(wbfe, wbfim, ax_im_tylcv=ax_im_tylcv, ax_unc_tylcv = ax_unc_tylcv, ax_im_ccr=ax_im_ccr, ax_unc_ccr = ax_unc_ccr, ax_im_soil=ax_im_soil, ax_unc_soil = ax_unc_soil, title_string="{label}")
else:
graph_env_im(wbfe, wbfim, ax_im_tylcv=ax_im_tylcv, ax_im_ccr=ax_im_ccr, ax_im_soil=ax_im_soil, title_string="{label}")
elif ground_truth == "gt": # only ground truth
if plot_uncertainty:
graph_env_im(wbfe, wbfim, ax_env_tylcv=ax_env_tylcv, ax_env_ccr=ax_env_ccr, ax_env_soil=ax_env_soil, title_string="{label}")
else:
graph_env_im(wbfe, wbfim, ax_env_tylcv=ax_env_tylcv, ax_env_ccr=ax_env_ccr, ax_env_soil=ax_env_soil, ax_im_soil=ax_im_soil, title_string="{label}")
plt.savefig(pathlib.Path(results["results-basedir"], graphfilename))
def end_of_day_scores(results, graphfilename = "EndOfDayGraph.pdf", title = None):
"""
Plot all the score components.
"""
#print(results)
wbfe = results["wbfe"]
wbfim = results["estimator-code"]
scores = WBF_MultiScore.score_components()
fig, axes = plt.subplots(1, len(scores), figsize=(3*len(scores),3))
for i, scorename in enumerate(scores):
graph_scores(results, axes[i], scorename)
plt.savefig(pathlib.Path(results["results-basedir"], graphfilename))
def hook_create_pictures(results, figsize = (3,3), draw_robot_path = True):
"""Hook for after day which generates the pictures of the graphs, for instance, for a movie"""
wbfe, wbf = results["wbfe"], results["wbf"]
wbfim = results["estimator-code"]
path = results["results-path"]
pnew = pathlib.Path(path.parent, "dir_" + path.name[4:])
pnew.mkdir(exist_ok = True)
results["picture-path"] = pnew
logging.info(f"hook_create_pictures after {len(results['observations']):05d} observations")
# tyclv-im-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_im_tylcv=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"tylcv-im-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# ccr-im-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_im_ccr=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"ccr-im-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# soil-im-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_im_soil=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"soil-im-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# tyclv-unc-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_unc_tylcv=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"tylcv-unc-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# ccr-unc-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_unc_ccr=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"ccr-unc-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# soil-unc-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_unc_soil=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"soil-unc-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# tyclv-env-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_env_tylcv=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"tylcv-env-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# ccr-env-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_env_ccr=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"ccr-env-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
# soil-env-robot
fig, ax = plt.subplots(1, 1, figsize=figsize)
graph_env_im(wbfe, wbfim, ax_env_soil=ax)
add_robot_path(results, ax, draw_it = draw_robot_path)
picname = f"soil-env-robot-{len(results['observations']):05d}.jpg"
plt.savefig(pathlib.Path(results["results-basedir"], pathlib.Path(pnew, picname)))
plt.close(fig)
def graph_gt_and_results(allresults, labels, metric="tylcv", horizontal=False):
"""Create a figure that shows the ground truth in the first column and the results of the algorithms, whose labels are listed in labels.
The figure is saved in the directory from which the results were showed,
in a file that has a name formed from the concatenations of the labels"""
uncmap = "inferno" # was "grey", "viridis"
if horizontal:
fig, axes = plt.subplots(nrows=3, ncols=(1+len(labels)), figsize=(3*(1+len(labels)), 3*3))
#b = [ a[i][0] for i in range(len(a))]
firstax = [ axes[i][0] for i in range(len(axes))]
else:
fig, axes = plt.subplots(nrows=(1+len(labels)), ncols=3, figsize=(3*3,3*(1+len(labels))))
firstax = axes[0]
# print(firstax)
firstax[0].axis('off')
firstax[2].axis('off')
# graph_env_im(allresults[labels[0]]["wbfe"], allresults[labels[0]]["estimator-code"], ax_env_tylcv=axes[0][1])
graph_env_im(allresults[labels[0]]["wbfe"], allresults[labels[0]]["estimator-code"], **{f"ax_env_{metric}":firstax[1]})
axes[1][0].set_title(f"Ground truth {metric}")
filename = f"gt-{metric}-"
for i, label in enumerate(labels):
results = allresults[label]
filename += label + "-"
if horizontal:
axrow = [ axes[j][i+1] for j in range(len(axes))]
#axrow = axes[:][i+1]
else:
axrow = axes[i+1]
# empty = np.ones_like(results["wbfe"].tylcv.value.T)
empty = np.ones_like(vars(results["wbfe"])[metric].value.T)
image_env = axrow[0].imshow(empty, vmin=0, vmax=1, origin="lower", cmap="gray")
add_robot_path(results, axrow[0], draw_robot = False)
# graph_env_im(results["wbfe"], results["estimator-code"], ax_im_tylcv=axrow[1])
graph_env_im(results["wbfe"], results["estimator-code"], **{f"ax_im_{metric}" : axrow[1]})
# graph_env_im(results["wbfe"], results["estimator-code"], ax_unc_tylcv = axrow[2], cmap=uncmap)
graph_env_im(results["wbfe"], results["estimator-code"], cmap=uncmap, **{f"ax_unc_{metric}": axrow[2]})
axrow[0].set_title(f"{label} path")
axrow[1].set_title(f"{label} estimate")
axrow[2].set_title(f"{label} uncertainty")
plt.tight_layout()
filename = filename[:-1] + ".pdf"
plt.savefig(pathlib.Path(results["results-basedir"], filename))
def smooth(scalars: List[float], weight: float) -> List[float]: # Weight between 0 and 1
""" Exponential moving average used by Tensorboard """
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value
return smoothed
def plot_scores(allresults, labels, scores, directory, smoothing = 0.7):
"""Taking the dictionary allresults, for all the specified labels, plot all the specified scored and save them into files in the directory"""
for scorename in scores:
fig, ax_scores = plt.subplots(1, figsize=(6,4))
filename = f"score-{scorename}-sm{smoothing}"
for label in labels:
filename += label + "-"
# rawscore = allresults[label]["scores"]
results = allresults[label]
scores = [a[scorename] for a in results["scores"]]
# scores = smooth(scores, 0.99)
scores = smooth(scores, 0.7)
#ax_scores.plot(scores, label = f'{results["policy-name"]}+{results["estimator-name"]}')
ax_scores.plot(scores, label = label)
# ax_scores.set_ylim(top=2)
ax_scores.set_xlabel("Time")
ax_scores.set_ylabel("Score")
ax_scores.set_title(f"Scores {scorename}")
ax_scores.legend()
fig.tight_layout()
filename = pathlib.Path(directory, f"{filename[:-1]}.pdf")
plt.savefig(filename)
def load_all_results(directory, prefix = "res_Miniberry-30_1M_"):
"""Loading all the results from a directory into a dictionary of results. The labels are inferred from the filename, with the common prefix stripped away"""
allresults = {}
for a in directory.iterdir():
if a.name.startswith("res_") and "picgen" not in a.name:
label = a.name[len(prefix):]
# print(label)
with compress.open(a, "rb") as f:
results = pickle.load(f)
allresults[label] = results
return allresults