forked from ggerganov/whisper.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama-context.cpp
1775 lines (1428 loc) · 64 KB
/
llama-context.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "llama-context.h"
#include "llama-impl.h"
#include "llama-mmap.h"
#include <cassert>
#include <cmath>
#include <cstring>
#include <stdexcept>
void llama_set_k_shift(struct llama_context & lctx) {
const int64_t kv_size = lctx.kv_self.size;
assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
int32_t * data = (int32_t *) lctx.inp_K_shift->data;
for (int i = 0; i < kv_size; ++i) {
data[i] = lctx.kv_self.cells[i].delta;
}
}
void llama_set_s_copy(struct llama_context & lctx) {
const int64_t kv_size = lctx.kv_self.size;
assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
for (int i = 0; i < kv_size; ++i) {
data[i] = lctx.kv_self.cells[i].src;
}
}
// llama input
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;
if (bidirectional) {
n_buckets >>= 1;
}
const int64_t max_exact = n_buckets >> 1;
int32_t relative_position = x - y;
int32_t relative_bucket = 0;
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
return relative_bucket;
}
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) {
//
// set input data
//
const auto & hparams = lctx.model.hparams;
const auto & cparams = lctx.cparams;
const auto & kv_self = lctx.kv_self;
if (ubatch.token) {
const int64_t n_tokens = ubatch.n_tokens;
ggml_backend_tensor_set(lctx.inp_tokens, ubatch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
}
if (ubatch.embd) {
const int64_t n_embd = hparams.n_embd;
const int64_t n_tokens = ubatch.n_tokens;
ggml_backend_tensor_set(lctx.inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
}
if (ubatch.pos && lctx.inp_pos) {
const int64_t n_tokens = ubatch.n_tokens;
auto n_pos = lctx.n_pos_per_token;
ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*n_pos*ggml_element_size(lctx.inp_pos));
}
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
//GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
if (!lctx.inp_out_ids) {
LLAMA_LOG_WARN("%s: 'lctx.inp_out_ids' is not created\n", __func__);
} else {
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
int32_t * data = (int32_t *) lctx.inp_out_ids->data;
if (lctx.n_outputs == n_tokens) {
for (int i = 0; i < n_tokens; ++i) {
data[i] = i;
}
} else if (ubatch.output) {
int32_t n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
if (ubatch.output[i]) {
data[n_outputs++] = i;
}
}
// the graph needs to have been passed the correct number of outputs
GGML_ASSERT(lctx.n_outputs == n_outputs);
} else if (lctx.n_outputs == 1) {
// only keep last output
data[0] = n_tokens - 1;
} else {
GGML_ASSERT(lctx.n_outputs == 0);
}
}
}
GGML_ASSERT(
// (!a || b) is a logical implication (a -> b)
// !hparams.causal_attn -> !cparams.causal_attn
(hparams.causal_attn || !cparams.causal_attn) &&
"causal attention is not supported by this model"
);
if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) {
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
if (cparams.causal_attn && !lctx.is_encoding) {
const int64_t n_kv = kv_self.n;
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
float * data = nullptr;
float * data_swa = nullptr;
if (lctx.inp_KQ_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
data = (float *) lctx.inp_KQ_mask->data;
}
if (lctx.inp_KQ_mask_swa) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer));
data_swa = (float *) lctx.inp_KQ_mask_swa->data;
}
// For causal attention, use only the previous KV cells
// of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
for (int h = 0; h < 1; ++h) {
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos pos = ubatch.pos[s*n_seq_tokens + j];
for (int i = 0; i < n_kv; ++i) {
float f;
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
f = -INFINITY;
} else {
if (hparams.use_alibi) {
f = -std::abs(kv_self.cells[i].pos - pos);
} else {
f = 0.0f;
}
}
if (data) {
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
// may need to cut off old tokens for sliding window
if (data_swa) {
if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
}
}
}
if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
if (data_swa) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
}
} else {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
// when using kv cache, the mask needs to match the kv cache size
const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
float * data = (float *) lctx.inp_KQ_mask->data;
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch.seq_id[s1][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
for (int s = 0; s < ubatch.n_seq_id[s0]; ++s) {
if (ubatch.seq_id[s0][s] == seq_id) {
if (hparams.use_alibi) {
f = -std::abs(ubatch.pos[ti] - ubatch.pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
}
}
for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
}
}
}
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(lctx.inp_mean);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
float * data = (float *) lctx.inp_mean->data;
memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
sum[seq_id] += ubatch.n_seq_tokens;
}
std::vector<float> div(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
}
}
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
for (int i = 0; i < n_seq_tokens; ++i) {
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
}
}
}
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(lctx.inp_cls);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch.pos[s*n_seq_tokens + i];
if (pos == 0) {
data[seq_id] = s*n_seq_tokens + i;
}
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
const int64_t n_tokens = ubatch.n_tokens;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(lctx.inp_cls);
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
std::vector<int> last_pos(n_tokens, -1);
std::vector<int> last_row(n_tokens, -1);
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch.pos[s*n_seq_tokens + i];
if (pos >= last_pos[seq_id]) {
last_pos[seq_id] = pos;
last_row[seq_id] = s*n_seq_tokens + i;
}
}
}
for (int i = 0; i < n_tokens; ++i) {
if (last_row[i] >= 0) {
data[i] = last_row[i];
}
}
}
if (kv_self.recurrent) {
const int64_t n_kv = kv_self.n;
if (lctx.inp_s_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
float * data = (float *) lctx.inp_s_mask->data;
// clear unused states
for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self.head;
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
}
}
if (lctx.inp_s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self.head;
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
}
}
}
if (lctx.inp_pos_bucket) {
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer));
GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing
int32_t * data = (int32_t *) lctx.inp_pos_bucket->data;
if (!lctx.is_encoding) {
const int64_t n_kv = kv_self.n;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_kv; ++i) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
}
}
}
} else {
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch.pos[i], ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding);
}
}
}
}
}
if (!lctx.is_encoding && lctx.inp_embd_enc) {
assert(lctx.inp_embd_enc->type == GGML_TYPE_F32);
assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size());
ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc));
}
if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) {
const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd;
const int64_t n_tokens = ubatch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer));
GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing
float * data = (float *) lctx.inp_KQ_mask_cross->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_output_enc; ++i) {
float f = -INFINITY;
for (int s = 0; s < ubatch.n_seq_id[j]; ++s) {
const llama_seq_id seq_id = ubatch.seq_id[j][s];
if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) {
f = 0.0f;
}
}
data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_output_enc; ++j) {
data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY;
}
}
}
}
}
// llama output
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) {
const auto & cparams = lctx.cparams;
const auto & hparams = lctx.model.hparams;
const auto & vocab = lctx.model.vocab;
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
const auto n_batch = cparams.n_batch;
const auto n_vocab = vocab.n_tokens();
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
const bool has_logits = !cparams.embeddings;
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
if (lctx.output_ids.empty()) {
// init, never resized afterwards
lctx.output_ids.resize(n_batch);
}
const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output.get()) : 0;
const size_t new_size = (logits_size + embd_size) * sizeof(float);
// alloc only when more than the current capacity is required
// TODO: also consider shrinking the buffer
if (!lctx.buf_output || prev_size < new_size) {
if (lctx.buf_output) {
#ifndef NDEBUG
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
lctx.buf_output = nullptr;
lctx.logits = nullptr;
lctx.embd = nullptr;
}
auto * buft = ggml_backend_cpu_buffer_type();
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory
auto * output_dev = lctx.model.dev_output();
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr;
if (output_dev_host_buft) {
buft = output_dev_host_buft;
}
lctx.buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size));
if (lctx.buf_output == nullptr) {
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
return 0;
}
}
float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output.get());
lctx.logits = has_logits ? output_base : nullptr;
lctx.embd = has_embd ? output_base + logits_size : nullptr;
lctx.output_size = n_outputs_max;
lctx.logits_size = logits_size;
lctx.embd_size = embd_size;
// set all ids as invalid (negative)
std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
ggml_backend_buffer_clear(lctx.buf_output.get(), 0);
lctx.n_outputs = 0;
return n_outputs_max;
}
void llama_output_reorder(struct llama_context & ctx) {
std::vector<size_t> & out_ids = ctx.sbatch.out_ids;
if (!out_ids.empty()) {
const uint32_t n_vocab = ctx.model.vocab.n_tokens();
const uint32_t n_embd = ctx.model.hparams.n_embd;
const int32_t n_outputs = ctx.n_outputs;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
// TODO: is there something more efficient which also minimizes swaps?
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
for (int32_t i = 0; i < n_outputs - 1; ++i) {
int32_t j_min = i;
for (int32_t j = i + 1; j < n_outputs; ++j) {
if (out_ids[j] < out_ids[j_min]) {
j_min = j;
}
}
if (j_min == i) { continue; }
std::swap(out_ids[i], out_ids[j_min]);
if (ctx.logits_size > 0) {
for (uint32_t k = 0; k < n_vocab; k++) {
std::swap(ctx.logits[i*n_vocab + k], ctx.logits[j_min*n_vocab + k]);
}
}
if (ctx.embd_size > 0) {
for (uint32_t k = 0; k < n_embd; k++) {
std::swap(ctx.embd[i*n_embd + k], ctx.embd[j_min*n_embd + k]);
}
}
}
std::fill(ctx.output_ids.begin(), ctx.output_ids.end(), -1);
for (int32_t i = 0; i < n_outputs; ++i) {
ctx.output_ids[out_ids[i]] = i;
}
out_ids.clear();
}
}
//
// interface implementation
//
void llama_free(struct llama_context * ctx) {
delete ctx;
}
uint32_t llama_n_ctx(const struct llama_context * ctx) {
return ctx->cparams.n_ctx;
}
uint32_t llama_n_batch(const struct llama_context * ctx) {
return ctx->cparams.n_batch;
}
uint32_t llama_n_ubatch(const struct llama_context * ctx) {
return ctx->cparams.n_ubatch;
}
uint32_t llama_n_seq_max(const struct llama_context * ctx) {
return ctx->kv_self.size;
}
const struct llama_model * llama_get_model(const struct llama_context * ctx) {
return &ctx->model;
}
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
return ctx->cparams.pooling_type;
}
void llama_attach_threadpool(
struct llama_context * ctx,
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) {
ctx->threadpool = threadpool;
ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool;
}
void llama_detach_threadpool(struct llama_context * ctx) {
ctx->threadpool = nullptr;
ctx->threadpool_batch = nullptr;
}
void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) {
ctx->cparams.n_threads = n_threads;
ctx->cparams.n_threads_batch = n_threads_batch;
}
int32_t llama_n_threads(struct llama_context * ctx) {
return ctx->cparams.n_threads;
}
int32_t llama_n_threads_batch(struct llama_context * ctx) {
return ctx->cparams.n_threads_batch;
}
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
for (auto & backend : ctx->backends) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
if (set_abort_callback_fn) {
set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data);
}
}
}
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) {
ctx->cparams.embeddings = embeddings;
}
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
ctx->cparams.causal_attn = causal_attn;
}
void llama_synchronize(struct llama_context * ctx) {
ggml_backend_sched_synchronize(ctx->sched.get());
// FIXME: if multiple single tokens are evaluated without a synchronization,
// the stats will be added to the prompt evaluation stats
// this should only happen when using batch size 1 to evaluate a batch
// add the evaluation to the stats
if (ctx->n_queued_tokens == 1) {
if (!ctx->cparams.no_perf) {
ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
}
ctx->n_eval++;
} else if (ctx->n_queued_tokens > 1) {
if (!ctx->cparams.no_perf) {
ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
}
ctx->n_p_eval += ctx->n_queued_tokens;
}
// get a more accurate load time, upon first eval
if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
ctx->n_queued_tokens = 0;
ctx->t_compute_start_us = 0;
}
float * llama_get_logits(struct llama_context * ctx) {
llama_synchronize(ctx);
// reorder logits for backward compatibility
// TODO: maybe deprecate this
llama_output_reorder(*ctx);
return ctx->logits;
}
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
int32_t j = -1;
llama_synchronize(ctx);
try {
if (ctx->logits == nullptr) {
throw std::runtime_error("no logits");
}
if (i < 0) {
j = ctx->n_outputs + i;
if (j < 0) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size()));
} else {
j = ctx->output_ids[i];
}
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}
if (j >= ctx->n_outputs) {
// This should not happen
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
}
return ctx->logits + j*ctx->model.vocab.n_tokens();
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
GGML_ABORT("fatal error");
#else
return nullptr;
#endif
}
}
float * llama_get_embeddings(struct llama_context * ctx) {
llama_synchronize(ctx);
// reorder embeddings for backward compatibility
// TODO: maybe deprecate this
llama_output_reorder(*ctx);
return ctx->embd;
}
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
int32_t j = -1;
llama_synchronize(ctx);
try {
if (ctx->embd == nullptr) {
throw std::runtime_error("no embeddings");
}
if (i < 0) {
j = ctx->n_outputs + i;
if (j < 0) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size()));
} else {
j = ctx->output_ids[i];
}
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}
if (j >= ctx->n_outputs) {
// This should not happen
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
}
return ctx->embd + j*ctx->model.hparams.n_embd;
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
GGML_ABORT("fatal error");
#else
return nullptr;
#endif
}
}
float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
llama_synchronize(ctx);
auto it = ctx->embd_seq.find(seq_id);
if (it == ctx->embd_seq.end()) {
return nullptr;
}
return it->second.data();
}
// llama state API
// deprecated
size_t llama_get_state_size(struct llama_context * ctx) {
return llama_state_get_size(ctx);
}
// deprecated
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
return llama_state_get_data(ctx, dst, -1);
}
// deprecated
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
return llama_state_set_data(ctx, src, -1);
}
// deprecated
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
}
// deprecated
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
return llama_state_save_file(ctx, path_session, tokens, n_token_count);
}
// TODO: replace all non-fatal assertions with returned errors or exceptions
struct llama_data_write {
virtual void write(const void * src, size_t size) = 0;
virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0;
virtual size_t get_size_written() = 0;
virtual ~llama_data_write() = default;
void write_string(const std::string & str) {
uint32_t str_size = str.size();
write(&str_size, sizeof(str_size));
write(str.data(), str_size);
}
void write_model_info(const struct llama_context * ctx) {
const std::string arch_str = llm_arch_name(ctx->model.arch);
write_string(arch_str);
// TODO: add more model-specific info which should prevent loading the session file if not identical
}
//void write_rng(const std::mt19937 & rng) {
// std::ostringstream rng_ss;
// rng_ss << rng;
// const std::string & rng_str = rng_ss.str();
// write_string(rng_str);
//}
void write_output_ids(struct llama_context * ctx) {
llama_output_reorder(*ctx);
const uint32_t n_outputs = ctx->n_outputs;
std::vector<int32_t> output_pos;
const size_t n_batch = ctx->cparams.n_batch;
const auto & output_ids = ctx->output_ids;
GGML_ASSERT(n_outputs <= ctx->output_size);
output_pos.resize(n_outputs);
// build a more compact representation of the output ids
for (size_t i = 0; i < n_batch; ++i) {
// map an output id to a position in the batch
int32_t pos = output_ids[i];
if (pos >= 0) {
GGML_ASSERT((uint32_t) pos < n_outputs);
output_pos[pos] = i;
}
}
write(&n_outputs, sizeof(n_outputs));
if (n_outputs) {
write(output_pos.data(), n_outputs * sizeof(int32_t));
}
}
void write_logits(const struct llama_context * ctx) {
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.vocab.n_tokens());
write(&logits_size, sizeof(logits_size));
if (logits_size) {
write(ctx->logits, logits_size * sizeof(float));
}
}
void write_embeddings(const struct llama_context * ctx) {
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd);
write(&embeddings_size, sizeof(embeddings_size));
if (embeddings_size) {
write(ctx->embd, embeddings_size * sizeof(float));
}
}
void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) {
for (const auto & range : cell_ranges) {
for (uint32_t i = range.first; i < range.second; ++i) {
const auto & cell = kv_self.cells[i];
const llama_pos pos = cell.pos;
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
write(&pos, sizeof(pos));
write(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id) {
for (auto seq_id : cell.seq_id) {
write(&seq_id, sizeof(seq_id));
}
}
}
}
}
void write_kv_cache_data(const struct llama_context * ctx, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) {
const struct llama_kv_cache & kv_self = ctx->kv_self;
const struct llama_hparams & hparams = ctx->model.hparams;
const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
const uint32_t n_layer = hparams.n_layer;
write(&v_trans, sizeof(v_trans));
write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
// Write key type
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size);
}
}
if (!kv_self.v_trans) {
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = kv_self.size;
for (uint32_t il = 0; il < n_layer; ++il) {
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
// Write value type
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cell_ranges) {
const size_t range_size = range.second - range.first;