Skip to content

RuntimeError: CUDA error: no kernel image is available for execution on the device #72

@aThinkingNeal

Description

@aThinkingNeal

I am running on a NVIDIA RTX 4070 Ti GPU, using the docker image provided in the repo, the error message is as following:

ckpt_dir: /home/neal/debug/YCBV_weights/bleach_cleanser/model_best_val.pth.tar
dataset_info_path /home/neal/debug/YCBV_data/bleach_cleanser/train_data_blender_DR/../dataset_info.yml
test_data_path is : /home/neal/debug/YCBV_data/data_organized/0051
args.ycb_dir is : /home/neal/debug/YCBV_data
self.object_cloud loaded and downsampled
self.object_width= 285.37860394994397
Loading ckpt from  /home/neal/debug/YCBV_weights/bleach_cleanser/model_best_val.pth.tar
/usr/local/lib/python3.6/dist-packages/torch/cuda/__init__.py:104: UserWarning: 
NVIDIA GeForce RTX 4070 Ti with CUDA capability sm_89 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_70.
If you want to use the NVIDIA GeForce RTX 4070 Ti GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

  warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))
pose track ckpt epoch=112
net init done
Using vispy renderer
model_path:  /home/neal/debug/YCB_models_with_ply/CADmodels/021_bleach_cleanser/textured.ply
self.cam_K:
 [[1.066778e+03 0.000000e+00 3.129869e+02]
 [0.000000e+00 1.067487e+03 2.413109e+02]
 [0.000000e+00 0.000000e+00 1.000000e+00]]
making dataset... for eval
#dataset: 0
self.trans_normalizer=0.03, self.rot_normalizer=0.08726646259971647
start_frame is: 0
gt_poses[0]=
 [[ 0.86345637 -0.50391231 -0.02271197 -0.04536975]
 [-0.23796631 -0.36722933 -0.89917466 -0.06449794]
 [ 0.44476481  0.78180285 -0.43700019  1.03577502]
 [ 0.          0.          0.          1.        ]]
Traceback (most recent call last):
  File "predict.py", line 679, in <module>
    predictSequenceYcb()
  File "predict.py", line 561, in predictSequenceYcb
    cur_pose = tracker.on_track(A_in_cam, rgb, depth, gt_A_in_cam=gt_poses[i-1],gt_B_in_cam=gt_poses[i], debug=debug,samples=samples)
  File "predict.py", line 271, in on_track
    prediction = self.model(dataA,dataB)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/home/se3_tracknet/se3_tracknet.py", line 84, in forward
    a = self.convA1(A)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/container.py", line 119, in forward
    input = module(input)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
    result = self.forward(*input, **kwargs)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py", line 399, in forward
    return self._conv_forward(input, self.weight, self.bias)
  File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py", line 396, in _conv_forward
    self.padding, self.dilation, self.groups)
RuntimeError: CUDA error: no kernel image is available for execution on the device

It seems the only solution here is to update the CUDA version from the one used in the docker image, which is CUDA 10.1 to a higher version which is compatible with the hardware?

Thanks in advance for your help :)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions