-
Notifications
You must be signed in to change notification settings - Fork 62
Description
Hey, I'm trying to get the results of the EC and Thermostability tasks, with the following config, but getting lower results (for example, 0.712 in the Thermostability and 0.866 in the EC). What can it be? Is the number of epochs too big?
Thank you!!
EC:
setting:
seed: 20000812
os_environ:
WANDB_API_KEY: ~
WANDB_RUN_ID: ~
CUDA_VISIBLE_DEVICES: 0,1,2,3 # ,4,5,6,7
MASTER_ADDR: localhost
MASTER_PORT: 12315
WORLD_SIZE: 1
NODE_RANK: 0
wandb_config:
project: EC
name: SaProt_650M_AF2
model:
model_py_path: saprot/saprot_annotation_model
kwargs:
config_path: weights/PLMs/SaProt_650M_AF2
load_pretrained: True
anno_type: EC
lr_scheduler_kwargs:
last_epoch: -1
init_lr: 2.0e-5
on_use: false
optimizer_kwargs:
betas: [0.9, 0.98]
weight_decay: 0.01
save_path: weights/EC/SaProt_650M_AF2.pt
dataset:
dataset_py_path: saprot/saprot_annotation_dataset
dataloader_kwargs:
batch_size: 4 # 8
num_workers: 4 # 8
train_lmdb: LMDB/EC/AF2/foldseek/train
valid_lmdb: LMDB/EC/AF2/foldseek/valid
test_lmdb: LMDB/EC/AF2/foldseek/test
kwargs:
tokenizer: weights/PLMs/SaProt_650M_AF2
plddt_threshold: 70
Trainer:
max_epochs: 100
log_every_n_steps: 1
strategy:
find_unused_parameters: True
logger: True
enable_checkpointing: false
val_check_interval: 0.1
accelerator: gpu
devices: 4 # 8
num_nodes: 1
accumulate_grad_batches: 4 # 1
precision: 16
num_sanity_val_steps: 0
Thermostability:
setting:
seed: 20000812
os_environ:
WANDB_API_KEY: ~
WANDB_RUN_ID: ~
CUDA_VISIBLE_DEVICES: 0,1,2,3 # ,4,5,6,7
MASTER_ADDR: localhost
MASTER_PORT: 12315
WORLD_SIZE: 1
NODE_RANK: 0
wandb_config:
project: Thermostability
name: SaProt_650M_AF2
model:
model_py_path: saprot/saprot_regression_model
kwargs:
config_path: weights/PLMs/SaProt_650M_AF2
load_pretrained: True
lr_scheduler_kwargs:
last_epoch: -1
init_lr: 2.0e-5
on_use: false
optimizer_kwargs:
betas: [0.9, 0.98]
weight_decay: 0.01
save_path: weights/Thermostability/SaProt_650M_AF2.pt
dataset:
dataset_py_path: saprot/saprot_regression_dataset
dataloader_kwargs:
batch_size: 4 # 8
num_workers: 4 # 8
train_lmdb: LMDB/Thermostability/foldseek/train
valid_lmdb: LMDB/Thermostability/foldseek/valid
test_lmdb: LMDB/Thermostability/foldseek/test
kwargs:
tokenizer: weights/PLMs/SaProt_650M_AF2
mix_max_norm: [40, 67]
plddt_threshold: 70
Trainer:
max_epochs: 200
log_every_n_steps: 1
strategy:
find_unused_parameters: True
logger: True
enable_checkpointing: false
val_check_interval: 0.5
accelerator: gpu
devices: 4
num_nodes: 1
accumulate_grad_batches: 8
precision: 16
num_sanity_val_steps: 0