-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath2101-hw4-rjw.tex
672 lines (655 loc) · 30.1 KB
/
math2101-hw4-rjw.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
\documentclass{letter}
\usepackage{enumitem}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{bm}
\usepackage[letterpaper,portrait,left=2cm,right=2cm,top=3.5cm,bottom=2cm]{geometry}
\pagestyle{fancy}
\fancyhf{}
\rhead{Robert Wagner\\June 21, 2016}
\lhead{Math 2101\\Assignment 4}
\newcounter{question}
\setcounter{question}{0}
\usepackage{amsmath,amsthm}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{arrows}
% magnitude bars
\newcommand{\norm}[1]{\lvert #1 \rvert}
% explicit vector
\newcommand{\Ve}[1]{\langle #1 \rangle}
% named vector
\newcommand{\Vn}[1]{\vec{\bm{#1}}}
% a line with an arrow above
\newcommand{\Line}[1]{\overrightarrow{#1}}
% equals with question mark above
\newcommand{\?}{\stackrel{?}{=}}
% formatting for questions
\newcommand\Que[1]{%
\leavevmode\noindent
#1
}
% formatting for answers
\newcommand\Ans[2][]{%
\leavevmode\noindent
{
\begin{mdframed}[backgroundcolor=blue!10]
#2
\end{mdframed}
}
}
% this is like align but squashed
\newenvironment{salign}
{\par$\!\aligned}
{\endaligned$\par}
% a matrix, parameter is column count
\newenvironment{Mat}[1]{%
\left[\begin{array}{*{#1}{r}}
}{%
\end{array}\right]
}
% an augmented matrix, parameter is non-augmented column count
\newenvironment{Amat}[1]{%
\left[\begin{array}{@{}*{#1}{r}|r@{}}
}{%
\end{array}\right]
}
\newenvironment{Amat2}[1]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#1}{r}}
}{%
\end{array}\right]
}
\newenvironment{Amat3}[2]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#2}{r}}
}{%
\end{array}\right]
}
\begin{document}
\begin{enumerate}
\item Let $A, B, C$\ be the following matrices:
\begin{align*}
&A= \begin{Mat}{2}
3 & 5 \\ 2 & -1
\end{Mat}
&&B= \begin{Mat}{3}
2 & 3 & 1 \\ 1 & 4 & 1
\end{Mat}
&&C= \begin{Mat}{2}
1 & -1 \\ 2 & -1 \\ -3 & 1
\end{Mat}
\end{align*}
If possible, find the following. If not possible, explain why.
\begin{enumerate}[label=(\alph*)]
\item\Que{
$A+B$
}
\Ans{
This operation is not possible as $A, B$ have different dimensions ($2\times 2$\ and $2\times 3$ respectively) and matrix addition is an elementwise operation.
}
\item \Que{
$-2A$
}
\Ans{
\begin{salign}
-2A =
\begin{Mat}{2}
-6 & -10 \\ -4 & 2
\end{Mat}
\end{salign}
}
\item \Que{
$A^2 + A$
}
\Ans{
\begin{salign}
A^2+A &=
\begin{Mat}{2} 3 & 5 \\ 2 & -1 \end{Mat}
\begin{Mat}{2} 3 & 5 \\ 2 & -1 \end{Mat}
+
\begin{Mat}{2} 3 & 5 \\ 2 & -1 \end{Mat}
&=
\begin{Mat}{2} 9+10 & 15-5 \\ 6-2 & 10+1 \end{Mat}
+
\begin{Mat}{2} 3 & 5 \\ 2 & -1 \end{Mat} \\
&=
\begin{Mat}{2} 22 & 15 \\ 6 & 10 \end{Mat}
\end{salign}
}
\item \Que{
$AB$
}
\Ans{
\begin{salign}
AB &=
\begin{Mat}{2} 3 & 5 \\ 2 & -1 \end{Mat}
\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 4 & 1\end{Mat}
&=
\begin{Mat}{3} 6 + 5 & 9 + 20 & 3 + 5 \\ 4 - 1 & 6 - 4 & 2 -1 \end{Mat} \\
&=
\begin{Mat}{3} 11 & 29 & 8 \\ 3 & 2 & 1 \end{Mat}
\end{salign}
}
\item \Que{
$B^T$
}
\Ans{
\begin{salign}
B^T &= \begin{Mat}{2} 2 & 1 \\ 3 & 4 \\ 1 & 1 \end{Mat}
\end{salign}
}
\item \Que{
$A(B+C)$
}
\Ans{
This operation is not possible as $B, C$ have different dimensions ($2\times 3$\ and $3\times 2$\ respectively) and matrix addition is an elementwise operation.
}
\item \Que{
$ABC$
}
\Ans{
\begin{salign}
ABC &=
\begin{Mat}{2} 3 & 5 \\ 2 & -1 \end{Mat}
\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 4 & 1 \end{Mat}
\begin{Mat}{2} 1 & -1 \\ 2 & -1 \\ -3 & 1 \end{Mat}
&=
\begin{Mat}{3} 11 & 29 & 8 \\ 3 & 2 & 1 \end{Mat}
\begin{Mat}{2} 1 & -1 \\ 2 & -1 \\ -3 & 1 \end{Mat}\\
&=
\begin{Mat}{2} 11 + 58 - 24 & -11 -29 + 8 \\
3 + 4 - 3 & -3 -2 + 1
\end{Mat} \\
&=
\begin{Mat}{2} 45 & -32 \\ 4 & -4 \end{Mat}
\end{salign}
}
\end{enumerate}
\newpage
\item
Given a matrix $M$, the right inverse of $M$\ is a matrix $D$\ where $MD=I$. The left inverse is a matrix $S$\ where $SM=I$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Suppose $M$\ is an $m\times n$\ matrix. What are the dimensions of $D$\ and $I$?
}
\Ans{
Since $MD=I$\ we know that the row count of $D$\ must match the column count of $M$ which is $n$. Suppose the column count of $D$\ is $p$. Then the product $MD$\ of a $m\times n$\ and a $n\times p$\ matrix would be a $m\times p$\ matrix. Since we know by definition that $I$ is square, it must be the case that $p=m$\ and therefore $D$ must be a $n\times m$ matrix and $I$\ must be a $m\times m$\ matrix.
}
\item \Que{
Suppose $D=S$\ (in other words, the right and left inverses are the same). What must be true about $M$?
}
\Ans{
For $M$\ to have a right inverse $D$\ and a left inverse $S$\ such that $D=S$, it must be the case that $M$ is a square matrix: Since we know from above that if $M$\ is $m\times n$\ then it must be the case that $D$\ is $n\times m$, and also for $SM=I$\ to be true then it must be the case that $S$\ is $n\times m$. Thus $MD=I^m$\ and $SM=I^n$, and for the two to be equal then $n=m$\ must be true, thus $M, D, S$\ must all be square.
}
\item \Que{
Let $M=\begin{Mat}{2}a & b \\ c & d \end{Mat}$\ and let $D=\begin{Mat}{2} x_1 & x_2 \\ x_3 & x_4 \end{Mat}$\ be a right inverse of $M$. Write down and solve the system of equations needed to solve for $x_1, x_2, x_3, x_4$. Also, indicate what must be true in order for the system to be solvable.
}
\Ans{If it is the case that
\begin{align*}
MD &= \begin{Mat}{2}a & b \\ c & d \end{Mat}
\begin{Mat}{2} x_1 & x_2 \\ x_3 & x_4 \end{Mat}
= I = \begin{Mat}{2} 1 & 0 \\ 0 & 1 \end{Mat}
\intertext{then we have the following system of equations:}
ax_1+bx_3 &= 1 \\
ax_2+bx_4 &= 0 \\
cx_1+dx_3 &= 0 \\
cx_2+dx_4 &= 1 \\
\intertext{we can solve with gaussian elimination:}
\begin{Amat2}{2} a & b & 1 & 0 \\ c & d & 0 & 1 \end{Amat2}
&\to
\begin{Amat2}{2} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 1 & \frac{d}{c} & 0 & \frac{1}{c} \end{Amat2}
\to
\begin{Amat2}{2} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & \frac{d}{c}-\frac{b}{a} & \frac{-1}{a} & \frac{1}{c} \end{Amat2} \\
&\to
\begin{Amat2}{2} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & \frac{ad-bc}{ac} & \frac{-c}{ac} & \frac{a}{ac} \end{Amat2}
\to
\begin{Amat2}{2} 1 & \frac{b}{a} & \frac{ad-bc}{a(ad-bc)} & 0 \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{Amat2} \\
&\to
\begin{Amat2}{2} 1 & 0 & \frac{ad-bc+bc}{a(ad-bc)} & \frac{-b}{ad-bc} \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{Amat2}
\to
\begin{Amat2}{2} 1 & 0 & \frac{d}{ad-be} & \frac{-b}{ad-bc} \\ 0 & 1 & \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{Amat2} \\
&\to \frac{1}{ad-bc}\begin{Amat2}{2} 1 & 0 & d & -b \\ 0 & 1 & -c & a \end{Amat2}
\intertext{thus we have found a unique solution}
D &= \frac{1}{ad-bc}\begin{Mat}{2} d & -b \\ -c & a \end{Mat}
\end{align*}
Since we cannot divide by zero, in order to solve this system it must be the case that $ad-bc \not = 0$.
}
\newpage
\item \Que{
Show that the matrix $D$\ you found is also a left inverse. (Consequently, we'll just say its an inverse of $M$\ and write it as $M^{-1}$.
}
\Ans{
\begin{align*}
DM &=
\left(\frac{1}{ad-bc}\begin{Mat}{2} d & -b \\ -c & a \end{Mat} \right)\begin{Mat}{2} a & b \\ c & d \end{Mat}
=
\frac{1}{ad-bc} \left(\begin{Mat}{2} d & -b \\ -c & a \end{Mat}\begin{Mat}{2} a & b \\ c & d \end{Mat}\right)
\\ &=
\frac{1}{ad-bc}\begin{Mat}{2} da-bc & db-bd \\ -ca+ac & -cb+ad \end{Mat}
=
\frac{1}{ad-bc}\begin{Mat}{2} ad-bc & 0 \\ 0 & ad-bc \end{Mat}
\\&=
\begin{Mat}{2} 1 & 0 \\ 0 & 1 \end{Mat}
= I
\end{align*}
Thus $D$ is also a left inverse, and thus an inverse of $M$.
}
\item \Que{
If possible, find $A^{-1}$\ for the matrix $A$\ above.
}
\Ans{
\begin{align*}
A&= \begin{Mat}{2}
3 & 5 \\ 2 & -1
\end{Mat}
\intertext{note that}
ad-bc &= (3)(-1)-(5)(2) = -13 \not = 0
\intertext{therefore we can find an inverse.}
A^{-1}
&=
\frac{1}{ad-bc}\begin{Mat}{2} d & -b \\ -c & a \end{Mat}
=
-\frac{1}{13}\begin{Mat}{2}-1 & -5 \\ -2 & 3 \end{Mat}
=
\frac{1}{13}\begin{Mat}{2} 1 & 5 \\ 2 & -3 \end{Mat}
\end{align*}
}
\item \Que{
If possible, find the right inverse of $B$, for the matrix $B$\ above.
}
\Ans{
We need to find $S$ such that $BS=I$. Since $B$\ is a $2\times 3$\ matrix, it follows that $S$\ will be a $3\times 2$\ matrix and subsequently $I$\ will be a $2\times 2$\ matrix.
\begin{align*}
BS&=
\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 4 & 1 \end{Mat}
\begin{Mat}{2} s_{11} & s_{12} \\ s_{21} & s_{22} \\ s_{31} & s_{32} \end{Mat}
=
\begin{Mat}{2} 2s_{11}+3s_{21}+1s_{31} & 2s_{12}+3s_{22}+1s_{32} \\
1s_{11}+4s_{21}+1s_{31} & 1s_{12}+4s_{22}+1s_{32} \end{Mat}
= I = \begin{Mat}{2} 1 & 0 \\ 0 & 1 \end{Mat}
\intertext{then we have the following system of equations:}
&2s_{11}+3s_{21}+1s_{31} = 1 \\
&2s_{12}+3s_{22}+1s_{32} = 0 \\
&1s_{11}+4s_{21}+1s_{31} = 0 \\
&1s_{12}+4s_{22}+1s_{32} = 1
\intertext{which we can solve with gaussian elimination}
&\begin{Amat3}{3}{2} 2 & 3 & 1 & 1 & 0 \\ 1 & 4 & 1 & 0 & 1 \end{Amat3}
\to
\begin{Amat3}{3}{2} 1 & -1 & 0 & 1 & -1 \\ 0 & 5 & 1 & -1 & 2 \end{Amat3}
\to
\begin{Amat3}{3}{2} 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 1/5 & -1/5 & 2/5 \end{Amat3}
\to
\\&
\begin{Amat3}{3}{2} 1 & 0 & 1/5 & 4/5 & -3/5 \\ 0 & 1 & 1/5 & -1/5 & 2/5 \end{Amat3}
\to
\begin{Amat3}{3}{2} 5 & 0 & 1 & 4 & -3 \\ 0 & 5 & 1 & -1 & 2 \end{Amat3}
\intertext{to parameterize, let $r=s_{31},~t=s_{32}$. Then}
&5s_{11}+r = 4 \to s_{11} = \frac{4-r}{5} \\
&5s_{12}+t = -3 \to s_{12} = \frac{-3-t}{5} \\
&5s_{21}+r = -1 \to s_{21} = \frac{-1-r}{5} \\
&5s_{22}+t = 2 \to s_{22} = \frac{2-t}{5}
\intertext{thus we can write the set of right inverses as (for all $r,t \in \mathbb{R}$)}
&S = \frac{1}{5}\begin{Mat}{2} 4 & -3 \\ -1 & 2 \\ 0 & 0 \end{Mat}
+
\frac{r}{5}\begin{Mat}{2} -1 & 0 \\ -1 & 0 \\ 1 & 0 \end{Mat}
+
\frac{t}{5}\begin{Mat}{2} 0 & -1 \\ 0 & -1 \\ 0 & 1 \end{Mat}
\intertext{to verify with $r=t=0$:}
&BS =
\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 4 & 1 \end{Mat}
\left(\frac{1}{5}\begin{Mat}{2} 4 & -3 \\ -1 & 2 \\ 0 & 0 \end{Mat}\right)
=
\frac{1}{5}\left(\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 4 & 1 \end{Mat}
\begin{Mat}{2} 4 & -3 \\ -1 & 2 \\ 0 & 0 \end{Mat}\right)
\\&=
\frac{1}{5}\left(\begin{Mat}{2} 2\cdot 4 + 3\cdot -1 + 1\cdot 0 & 2\cdot -3 + 3\cdot 2 + 1\cdot 0 \\
1\cdot 4 + 4\cdot -1 + 1\cdot 0 & 1\cdot -3 + 4\cdot 2 + 1\cdot 0
\end{Mat}\right)
=
\frac{1}{5}\begin{Mat}{2} 5 & 0 \\ 0 & 5 \end{Mat}
\\&=
\begin{Mat}{2} 1 & 0 \\ 0 & 1 \end{Mat} = I
\intertext{thus we have shown that there are an infinite number of right inverses for B.}
\end{align*}
}
\item \Que{
If possible, find $(CB)^{-1}$.
}
\Ans{
\begin{align*}
CB &= \begin{Mat}{2} 1 & -1 \\ 2 & -1 \\ -3 & 1 \end{Mat}
\begin{Mat}{3} 2 & 3 & 1 \\ 1 & 4 & 1 \end{Mat}
= \begin{Mat}{3} 2-1 & 3-4 & 1-1 \\ 4-1 & 6-4 & 2-1 \\ 1-6 & 4-9 & 1-3 \end{Mat}
= \begin{Mat}{3} 1 & -1 & 0 \\ 3 & 2 & 1 \\ -5 & -5 & -2 \end{Mat}
\intertext{to find $(CB)^{-1}$ we need to solve the system}
&\begin{Amat2}{3} 1 & -1 & 0 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 1 & 0 \\
-5 & -5 & -2 & 0 & 0 & 1 \end{Amat2}
\to
\begin{Amat2}{3} 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 5 & 1 & -3 & 1 & 0 \\
0 & -10 & -2 & 5 & 0 & 1 \end{Amat2}
\to\\
&\begin{Amat2}{3} 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 5 & 1 & -3 & 1 & 0 \\
0 & 0 & 0 & -1 & 2 & 1 \end{Amat2}
\intertext{and we have reached a contradiction, therefore there is no inverse $(CB)^{-1}$.}
\end{align*}
}
\end{enumerate}
\newpage
\item
Determine whether the statement is true. If the statement is true, prove it. If the statement is false, find the correct expression for the right side and prove your result. You may assume $P, Q$\ are invertible matrices of the appropriate size for addition / multiplication.
\begin{enumerate}[label=(\alph*)]
\item \Que{
$(P^{-1})^{-1} = P$
}
\Ans{
Let $Q=P^{-1}$. then
\begin{align*}
Q^{-1}Q &= I
\shortintertext{which can be rewritten as}
Q^{-1}P^{-1} &= I
\shortintertext{multiply $P$\ by both sides to get}
Q^{-1}P^{-1}P &= IP
\shortintertext{which simplifies to}
Q^{-1}&=P
\shortintertext{thus}
(P^{-1})^{-1}&=P \qed
\end{align*}
}
\item \Que{
$(PQ)^{-1}=P^{-1}Q^{-1}$
}
\Ans{
The correct identity is $(PQ)^{-1} = Q^{-1}P^{-1}$\ as shown below.
\begin{align*}
PQ(PQ)^{-1} &= I
\shortintertext{multiply both sides by $P^{-1}$ and simplify:}
P^{-1}PQ(PQ)^{-1} &= P^{-1}I \\
Q(PQ)^{-1} &= P^{-1}
\shortintertext{multiply both sides by $Q^{-1}$ and simplify:}
Q^{-1}Q(PQ)^{-1} &= Q^{-1}P^{-1} \\
(PQ)^{-1} &= Q^{-1}P^{-1}
\qed
\end{align*}
}
\item \Que{
$aP + bP = (a+b)P$\ (where $a,b \in \mathbb{R}$).
}
\Ans{
\begin{align*}
aP + bP &= a\begin{Mat}{3} p_{11} & \cdots & p_{1m} \\
\vdots & \ddots & \vdots \\
p_{n1} & \cdots & p_{nm} \end{Mat}
+ b\begin{Mat}{3} p_{11} & \cdots & p_{1m} \\
\vdots & \ddots & \vdots \\
p_{n1} & \cdots & p_{nm} \end{Mat}
\\&= \begin{Mat}{3} ap_{11} & \cdots & ap_{1m} \\
\vdots & \ddots & \vdots \\
ap_{n1} & \cdots & ap_{nm} \end{Mat}
+\begin{Mat}{3} bp_{11} & \cdots & bp_{1m} \\
\vdots & \ddots & \vdots \\
bp_{n1} & \cdots & bp_{nm} \end{Mat}
\\&= \begin{Mat}{3} ap_{11}+bp_{11} & \cdots & ap_{1m}+bp_{1m} \\
\vdots & \ddots & \vdots \\
ap_{n1}+bp_{n1} & \cdots & ap_{nm}+bp_{nm} \end{Mat}
= \begin{Mat}{3} (a+b)p_{11} & \cdots & (a+b)p_{1m} \\
\vdots & \ddots & \vdots \\
(a+b)p_{b1} & \cdots & (a+b)p_{nm} \end{Mat}
\\&=(a+b)\begin{Mat}{3} p_{11} & \cdots & p_{1m} \\
\vdots & \ddots & \vdots \\
p_{n1} & \cdots & p_{nm} \end{Mat}
=(a+b)P \qed
\end{align*}
}
\newpage
\item \Que{
$(P^T)^T=P$
}
\Ans{Let $P$\ be a $n\times m$\ matrix and define $Q=P^T$\ to be the $m\times n$\ transpose of $P$. Then if
\begin{align*}
P&=\begin{Mat}{4} p_{11} & p_{12} & \cdots & p_{1m} \\
p_{21} & p_{22} & \cdots & p_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n1} & p_{n2} & \cdots & p_{nm} \end{Mat}
\shortintertext{then}
Q &= \begin{Mat}{4} p_{11} & p_{21} & \cdots & p_{n1} \\
p_{12} & p_{22} & \cdots & p_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1m} & p_{2m} & \cdots & p_{nm} \end{Mat}
\shortintertext{then transposing $Q$ we get}
Q^T &=\begin{Mat}{4} p_{11} & p_{12} & \cdots & p_{1m} \\
p_{21} & p_{22} & \cdots & p_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n1} & p_{n2} & \cdots & p_{nm} \end{Mat}
\shortintertext{thus we find}
Q^T&=P \qed
\end{align*}
}
\item \Que{
If $PP^{-1}=I$, then $P^{-1}P=I$
}
\Ans{Suppose $PP^{-1}=I$.
\begin{align*}
PP^{-1} &= I
\shortintertext{multiply both sides by $P^{-1}$ and substitute I:}
P^{-1}PP^{-1} &= P^{-1}I \\
IP^{-1} &= P^{-1}PP^{-1}
\shortintertext{multiply $P$\ by both sides and simplify:}
IP^{-1}P &= P^{-1}PP^{-1}P \\
P^{-1}P &= II \\
P^{-1}P &= I \qed
\end{align*}
}
\end{enumerate}
~\\
\item
Verify that each is a vector space, OR explain why it is not.
\begin{enumerate}[label=(\alph*)]
\item \Que{
The set of polynomials with integer coefficients, under the standard addition of polynomials.
}
\Ans{
This is not a vector space since \textbf{it is not closed under scalar multiplication.}
Let $\mathbb{P}$\ be the set of polynomials with integer coefficients,
and let $\Vn{p} \in \mathbb{P}$\ be a polynomial such that \[\Vn{p}=p_0+p_1x^1+p_2x^2+...+p_nx^n \text{ for all } x\in\mathbb{R}\] where $p_0,p_1,...,p_n \in \mathbb{Z}$. Let $c \in \mathbb{R}$ be defined as $c = \pi$. Note that $c$ is irrational, and thus the scalar product \[c\Vn{p}=cp_0+cp_1x^1+cp_2x^2+...+cp_nx^n \text{ for all } x\in\mathbb{R}\] does not have integer coefficients, thus $c\Vn{p} \not\in \mathbb{P}$\ and therefore $\mathbb{P}$\ is not closed under scalar multiplication and is not a vector space.
}
\item \Que{
The set of $3\times 3$\ matrices, under matrix addition.
}
\Ans{Let $\mathbb{M}_3$\ be the set of $3\times 3$\ matrices, $C,D,E \in \mathbb{M}_3$, and $z,w \in \mathbb{R}$.
\begin{align*}
\shortintertext{the set is closed under addition:}
C + D &= \Ve{c_{11} + d_{11}, c_{12}+d_{12},\cdots,c_{33}+d_{33}} \in \mathbb{M}_3
\shortintertext{the set is closed under scalar multiplication:}
zC &= z\Ve{c_{11},c_{12},\cdots,c_{33}} = \Ve{zc_{11},zc_{12},\cdots,zc_{33}} \in \mathbb{M}_3
\shortintertext{the set of commutative:}
C+D &= \Ve{c_{11},c_{12},\cdots,c_{33}} + \Ve{d_{11},d_{12},\cdots,d_{33}}
= \Ve{c_{11}+d_{11}, c_{12}+d_{12},\cdots,c_{33}+d_{33}}\\
&= \Ve{d_{11}+c_{11}, d_{12}+c_{12},\cdots,d_{33}+c_{33}}
= \Ve{d_{11},d_{12},\cdots,d_{33}} + \Ve{c_{11},c_{12},\cdots,c_{33}}
\\&= D+C
\shortintertext{the set is associative:}
(C+D)+E &= (\Ve{c_{11},c_{12},\cdots,c_{33}} + \Ve{d_{11},d_{12},\cdots,d_{33}}) +
\Ve{e_{11},e_{12},\cdots,e_{33}} \\
&= (\Ve{c_{11}+d_{11},c_{12}+d_{12},\cdots,c_{33}+d_{33}} +
\Ve{e_{11},e_{12},\cdots,e_{33}} \\
&= \Ve{c_{11}+d_{11}+e_{11},c_{12}+d_{12}+e_{12},\cdots,c_{33}+d_{33}+e_{33}} \\
&= \Ve{c_{11},c_{12},\cdots,c_{33}}+\Ve{d_{11}+e_{11},d_{12}+e_{12},\cdots,d_{33}+e_{33}} \\
&= \Ve{c_{11},c_{12},\cdots,c_{33}} +
(\Ve{d_{11},d_{12},\cdots,d_{33}}+\Ve{e_{11},e_{12},\cdots,e_{33}}) \\
&= C+(D+E)
\shortintertext{the set contains a zero vector such that $C+\Vn{0}=C$:}
\Vn{0} &= \Ve{0,0,0,0,0,0,0,0,0} \\
C+\Vn{0} &= \Ve{c_{11},c_{12},\cdots,c_{33}} + \Ve{0,0,\cdots,0}
= \Ve{c_{11}+0,c_{12}+0,\cdots,c_{33}+0}
= C
\shortintertext{the set contains additive inverses for all members:}
C^\prime &= (-1)C\\
C + C^\prime &= \Ve{c_{11},c_{12},\cdots,c_{33}} + (-1)\Ve{c_{11},c_{12},\cdots,c_{33}} \\
&= \Ve{c_{11}-c_{11},c_{12}-c_{12},\cdots,c_{33}-c_{33}} = \Vn{0}
\shortintertext{multiplication by 1 is idempotent:}
1C &= 1\Ve{c_{11},c_{12},\cdots,c_{33}}=\Ve{1\cdot c_{11},1\cdot c_{12},\cdots,1 \cdot c_{33}}
= C
\shortintertext{the set is associative of scalar multiplication:}
z(wC) &= z(w\Ve{c_{11},c_{12},\cdots,c_{33}})=z\Ve{wc_{11},wc_{12},\cdots,wc_{33}}\\
&= zw(\Ve{c_{11},c_{12},\cdots,c_{33}}) = (zw)C
\shortintertext{the set is distributive of scalar over vector:}
z(C+D) &= z(\Ve{c_{11},c_{12},\cdots,c_{33}}+\Ve{d_{11},d_{12},\cdots,d_{33}}) \\
&= z\Ve{c_{11}+d_{11},c_{12}+d_{12},\cdots,c_{33}+d_{33}} \\
&= \Ve{zc_{11}+zd_{11},zc_{12}+zd_{12},\cdots,zc_{33}+zd_{33}} \\
&= \Ve{zc_{11},zc_{12},\cdots,zc_{33}} + \Ve{zd_{11},zd_{12},\cdots,zd_{33}}
= zC+zD
\shortintertext{the set is distributive of vector over scalar:}
(z+w)C &= (z+w)\Ve{c_{11},c_{12},\cdots,c_{33}}
= \Ve{(z+w)c_{11},(z+w)c_{12},\cdots,(z+w)c_{33}} \\
&= \Ve{zc_{11}+wc_{11},zc_{12}+wc_{12},\cdots,zc_{33}+wc_{33}} \\
&= \Ve{zc_{11},zc_{12},\cdots,zc_{33}} + \Ve{wc_{11},wc_{12},\cdots,wc_{33}}
= zC+wC
\shortintertext{thus the set is a vector space.}
\end{align*}
}
\newpage
\item \Que{
The set of invertible $4\times 4$\ matrices, under matrix addition.
}
\Ans{
Let $\mathbb{M}_4$\ be the set of invertible $4\times 4$\ matrices.
Since \textbf{the zero vector is not invertible}, and therefore $\Vn{0}\not\in \mathbb{M}_4$\ and subsequently $\mathbb{M}_4$\ is not a vector space.
}
\item \Que{
The set of polynomials with real coefficients, where, given two polynomials $f, g$\ we define $+$\ as $f+g=\frac{d}{dx}(fg)$
}
\Ans{Let $\mathbb{P}$\ be the set described.
This is not a vector space since there exists no zero vector $\Vn{0} \in \mathbb{P}$ such that $f + \Vn{0} = f$.
\begin{align*}
f &= f_0 + f_1x + f_2x^2 + \cdots + f_nx^n \\
\Vn{0} &= z_0 + z_1x + z_1x^2 + \cdots + z_nx^n \\
f + \Vn{0} &= \frac{d}{dx}\left[(f_0 + f_1x + \cdots + f_nx^n)(z_0+z_1x+\cdots+z_nx^n) \right] \\
&= \frac{d}{dx}[(f_0z_0) + (f_0z_1+f_1z_0)x + (f_0z_2+f_1z_1+f_2z_0)x^2 + \cdots + \\
&~~~~~~~~~(f_{n-2}z_n+f_{n-1}z_{n-1}+f_nz_{n-2})x^{n-2} +
(f_{n-1}z_n+f_nz_{n-1})x^{2n-1} + (f_nz_n)x^{2n}] \\
&= (f_0z_1+f_1z_0) + 2(f_0z_2+f_1z_1+f_2z_0)x + \cdots + \\
&~~~~(2n-1)(f_{n-1}z_n+f_nz_{n-1})x^{2n-2} +
(2n)(f_nz_n)x^{2n-1}
\end{align*}
We can see that $f_0$\ would require $z_1=1$\ and $f_1$\ would require $z_1=1/2$, and both cannot be the case.
}
\item \Que{
The set of polynomials with real coefficients, where, given two polynomials $f, g$\ we define $+$\ as $f'g'$
}
\Ans{
Let $\mathbb{P}$\ be the set described. This is not a vector space since there exists no zero vector $\Vn{0} \in \mathbb{P}$ such that $f + \Vn{0} = f$.
\begin{align*}
f &= f_0 + f_1x + f_2x^2 + \cdots + f_nx^n \\
\Vn{0} &= z_0 + z_1x + z_1x^2 + \cdots + z_nx^n \\
f + \Vn{0} &= \frac{d}{dx}[(f_0 + f_1x + \cdots + f_nx^n)]
\cdot
\frac{d}{dx}[(z_0+z_1x+\cdots+z_nx^n)] \\
&= (f_1 + \frac{f_2x}{2} + \frac{f_3x^2}{3} + \cdots + \frac{f_{n}x^{n-1}}{n}) \cdot
(z_1 + \frac{z_2x}{2} + \frac{z_3x^2}{3} + \cdots + \frac{z_{n}x^{n-1}}{n}) \\
&= (f_1z_1) + (\frac{f_1z_2+f_2z_1}{2})x + (\frac{f_1z_3+f_2z_2+f_3z_1}{3})x^2+\cdots
\intertext{which results in the system of equations if we define $f=f+\Vn{0}$}
f_0&=f_1z_1 \\
f_1&=\frac{f_1z_2+f_2z_1}{2} \\
f_2&=\frac{f_1z_3+f_2z_2+f_3z_1}{3} \\
&\vdots
\shortintertext{since $z_1=\frac{f_0}{f_1}$\ is not defined when $f_1=0$, it follows that no such $\Vn{0}$\ exists which satisfies $f=f+\Vn{0}$\ for all polynomials with real coefficients.}
\end{align*}
}
\end{enumerate}
\newpage
\item Let $\Vn{v_1}=\Ve{2,1,0}$, $\Vn{v_2}=\Ve{1,0,-1}$, and $\Vn{v_3}=\Ve{3,1,-1}$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Prove or disprove: The set of linear combinations of $\Vn{v_1}, \Vn{v_2}, \Vn{v_3}$\ forms a vector space, using the ordinary definitions for vector addition and scalar multiplication.
}
\Ans{
Let $\mathbb{V}$\ be the set of linear combinations of $\Vn{v_1}, \Vn{v_2}, \Vn{v_3}$, $\Vn{c}, \Vn{d}, \Vn{e} \in \mathbb{V}$\ be vectors, and $z,w\in\mathbb{R}$.
\begin{align*}
\shortintertext{the set is closed under addition:}
\Vn{c} + \Vn{d} &= (c_1\Vn{v}_1 + c_2\Vn{v}_2 + c_3\Vn{v}_3) + (d_1\Vn{v}_1 + d_2\Vn{v}_2 + d_3\Vn{v}_3)\\
&= (c_1+d_1)\Vn{v}_1 + (c_2+d_2)\Vn{v}_2 + (c_3+d_3)\Vn{v}_3 \in \mathbb{V}
\shortintertext{the set is closed under scalar multiplication:}
z\Vn{c} &= z(c_1\Vn{v}_1 + c_2\Vn{v}_2 + c_3\Vn{v}_3)
= (zc_1)\Vn{v}_1 + (zc_2)\Vn{v}_2 + (zc_3)\Vn{v}_3 \in \mathbb{V}
\shortintertext{the set of commutative:}
\Vn{c}+\Vn{d} &= (c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3)+(d_1\Vn{v}_1+d_2\Vn{v}_2+d_3\Vn{v}_3) \\
&= (c_1+d_1)\Vn{v}_1 + (c_2+d_2)\Vn{v}_2 + (c_3+d_3)\Vn{v}_3 \\
&= (d_1+c_1)\Vn{v}_1 + (d_2+c_2)\Vn{v}_2 + (d_3+c_3)\Vn{v}_3 \\
&= (d_1\Vn{v}_1 + d_2\Vn{v}_2+d_3\Vn{v}_3)+(c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3)
= \Vn{d}+\Vn{c}
\shortintertext{the set is associative:}
(\Vn{c}+\Vn{d})+\Vn{e} &= (c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3+d_1\Vn{v}_1+d_2\Vn{v}_2+d_3\Vn{v}_3)+
e_1\Vn{v}_1+e_2\Vn{v}_2+e_3\Vn{v}_3 \\
&= (c_1+d_1+e_1)\Vn{v}_1 + (c_2+d_2+e_2)\Vn{v}_2 + (c_3+d_3+e_3)\Vn{v}_3 \\
&= (d_1\Vn{v}_1+d_2\Vn{v}_2+d_3\Vn{v}_3+e_1\Vn{v}_1+e_2\Vn{v}_2+e_3\Vn{v}_3)+
c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3 \\
&= \Vn{c} + (\Vn{d}+\Vn{e})
\shortintertext{the set contains a zero vector such that $\Vn{c}+\Vn{0}=\Vn{c}$:}
\Vn{0} &= \Ve{0,0,0} \\
\Vn{c}+\Vn{0} &= (c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3) + (0\Vn{v}_1+0\Vn{v}_2+0\Vn{v}_3) \\
&= (c_1+0)\Vn{v}_1+(c_2+0)\Vn{v}_2+(c_3+0)\Vn{v}_3
= \Vn{c}
\shortintertext{the set contains additive inverses for all members:}
\Vn{c}^\prime &= (-1)\Vn{c}\\
\Vn{c} + \Vn{c}^\prime &= (c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3)+(-1)(c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3)\\
&= (c_1-c_1)\Vn{v}_1 + (c_2-c_2)\Vn{v}_2+(c_3-c_3)\Vn{v}_3 \\
&= 0\Vn{v}_1+0\Vn{v}_2+0\Vn{v}_3
= \Vn{0}
\shortintertext{multiplication by 1 is idempotent:}
\Vn{c}\cdot 1 &= (c_1\cdot 1)\Vn{v}_1 + (c_2\cdot 2)\Vn{v}_2 + (c_3\cdot 3)\Vn{v}_3
= c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3
= \Vn{c}
\shortintertext{the set is associative of scalar multiplication:}
z(w\Vn{c}) &= z(wc_1\Vn{v}_1+wc_2\Vn{v}_2+wc_3\Vn{v}_3)
= (zw)(c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3)
= (zw)\Vn{c}
\shortintertext{the set is distributive of scalar over vector:}
z(\Vn{c}+\Vn{d}) &= z(c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3+d_1\Vn{v}_1+d_2\Vn{v}_2+d_3\Vn{v}_3) \\
&= zc_1\Vn{v}_1+zc_2\Vn{v}_2+zc_3\Vn{v}_3+zd_1\Vn{v}_1+zd_2\Vn{v}_2+zd_3\Vn{v}_3 \\
&= (zc_1\Vn{v}_1+zc_2\Vn{v}_2+zc_3\Vn{v}_3)+(zd_1\Vn{v}_1+zd_2\Vn{v}_2+zd_3\Vn{v}_3)
= z\Vn{c}+z\Vn{d}
\shortintertext{the set is distributive of vector over scalar:}
(z+w)\Vn{c} &= (z+w)(c_1\Vn{v}_1 + c_2\Vn{v}_2 + c_3\Vn{v}_3) \\
&= zc_1\Vn{v}_1+zc_2\Vn{v}_2+zc_3\Vn{v}_3+wc_1\Vn{v}_1+wc_2\Vn{v}_2+wc_3\Vn{v}_3 \\
&= z(c_1\Vn{v}_1+c_2\Vn{v}_2+c_3\Vn{v}_3+w(c_1\Vn{v}_1+c_2\Vn{v}_3+c_3\Vn{v}_3)
= z\Vn{c} + w\Vn{c}
\end{align*}
}
\item \Que{
Find the vectors $\Ve{x,y,z}$\ that can be written as a linear combination of $\Vn{v}_1, \Vn{v}_2, \Vn{v}_3$.
}
\Ans{For some $a,b,c \in \mathbb{R}$\ we can define a vector
\begin{align*}
\Ve{x,y,z} &= a\Vn{v}_1+b\Vn{v}_2+c\Vn{v}_3 = a\Ve{2,1,0} + b\Ve{1,0,-1}+c\Ve{3,1,-1}
\intertext{we can form a system of equations}
2a+1b+3c &= x \\
1a+0b+1c &= y \\
0a+(-1)b+(-1)c &= z
\intertext{which can be solved using gaussian reduction}
M&=\begin{Amat}{3} 2 & 1 & 3 & x \\
1 & 0 & 1 & y \\
0 & -1 & -1 & z \end{Amat}
\to
\begin{Amat}{3} 1 & 1 & 2 & x-y \\
1 & 0 & 1 & y \\
0 & -1 & -1 & z \end{Amat}
\to
\begin{Amat}{3} 1 & 1 & 2 & x-y \\
0 & -1 & -1 & y-(x-y) \\
0 & -1 & -1 & z \end{Amat}
\\&\to
\begin{Amat}{3} 1 & 1 & 2 & x-y \\
0 & -1 & -1 & 2y-x \\
0 & 0 & 0 & z-2y+x \end{Amat}
\intertext{Which leaves us with a solution set}
x-2y+z &= 0
\intertext{which is a plane in $\mathbb{R}^3$\ which contains the vectors $\Ve{x,y,z}$\ that are linear combinations of $\Vn{v}_1,\Vn{v}_2,\Vn{v}_3$.}
\end{align*}
}
\end{enumerate}
\end{enumerate}
\end{document}