-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath2101-hw8-rjw.tex
559 lines (537 loc) · 26.4 KB
/
math2101-hw8-rjw.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
\documentclass{letter}
\usepackage{enumitem}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{bm}
\usepackage[letterpaper,portrait,left=2cm,right=2cm,top=3.5cm,bottom=2cm]{geometry}
\pagestyle{fancy}
\fancyhf{}
\rhead{Robert Wagner\\July 7, 2016}
\lhead{Math 2101\\Assignment 8}
\newcounter{question}
\setcounter{question}{0}
\usepackage{amsmath,amsthm}
\usepackage{amssymb}
\usepackage{tikz}
\usetikzlibrary{arrows}
% magnitude bars
\newcommand{\norm}[1]{\lvert #1 \rvert}
% explicit vector
\newcommand{\Ve}[1]{\langle #1 \rangle}
% named vector
\newcommand{\Vn}[1]{\vec{#1}}
% a line with an arrow above
\newcommand{\Line}[1]{\overrightarrow{#1}}
% equals with question mark above
\newcommand{\?}{\stackrel{?}{=}}
% formatting for questions
\newcommand\Que[1]{%
\leavevmode\noindent
#1
}
% formatting for answers
\newcommand\Ans[2][]{%
\leavevmode\noindent
{
\begin{mdframed}[backgroundcolor=blue!10]
#2
\end{mdframed}
}
}
% this is like align but squashed
\newenvironment{salign}
{\par$\!\aligned}
{\endaligned$\par}
% a matrix, parameter is column count
\newenvironment{Mat}[1]{%
\left[\begin{array}{*{#1}{r}}
}{%
\end{array}\right]
}
% a matrix, parameter is column count centered
\newenvironment{Cmat}[1]{%
\left[\begin{array}{*{#1}{c}}
}{%
\end{array}\right]
}
% an augmented matrix, with one augmented column
\newenvironment{Amat}[1]{%
\left[\begin{array}{@{}*{#1}{r}|r@{}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and n augmented columns
\newenvironment{Amat2}[1]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#1}{r}}
}{%
\end{array}\right]
}
% an augmented matrix with n columns and m augmented columns
\newenvironment{Amat3}[2]{%
\left[\begin{array}{@{~}*{#1}{r}| @{~~}*{#2}{r}}
}{%
\end{array}\right]
}
\begin{document}
\begin{enumerate}
\item Let $P=(1,1,-1), Q=(1,2,5), R=(-1,-3,-4)$\ be points in $\mathbb{R}^3$.
\begin{enumerate}
\item Find the distance between the line $\Line{PQ}$\ and the point $R$.
\Ans{
\begin{align*}
\Vn{v} &= Q-P = \Ve{1-1,2-1,5-(-1)} = \Ve{0,1,6} \\
\Vn{w} &= R-P = \Ve{-1-1,-3-1,-4-(-1)}=\Ve{-2,-4,-3}\\
\Vn{w}_\perp &= \Vn{w}-proj_{\Vn{v}}\Vn{w} = \Vn{w}-\frac{\Vn{v}\cdot\Vn{w}}{\Vn{v}\cdot\Vn{v}}\Vn{v}\\
&= \Ve{-2,-4,-3} - \frac{0+(-4)+(-18)}{0+1+36}\Ve{0,1,6}\\
&= \Ve{\frac{-74}{37},\frac{-148}{37},\frac{-111}{37}} - \frac{-22}{37}\Ve{0,1,6} = \frac{1}{37}\Ve{-74,-126, 21} \\
\norm{\Vn{w}_\perp} &= \frac{1}{37}\sqrt{(-74)^2+(-126)^2+(21)^2} = \frac{\sqrt{21793}}{37}\\
&\approx \underline{3.989852}
\end{align*}
Is the distance between the line $\Line{PQ}$\ and the point $R$.
}
\item Find the distance between the origin and the plane $PQR$.
\Ans{
$\Vn{v}=\Ve{0,1,6}$\ and $\Vn{w}=\Ve{-2,-4,-3}$\ found above are two non-parallel vectors in $PQR$.
Since we are working in $\mathbb{R}^3$, the cross product is defined and we can find a vector $\Vn{n}$\ that is normal to the plane:
\begin{align*}
\Vn{n} &= \begin{vmatrix} i & j & k \\ 0 & 1 & 6 \\ -2 & -4 & -3 \end{vmatrix}
= [(1)(-3)-(6)(-4)]i-[(0)(-3)-(6)(-2)]j+[(0)(-4)-(1)(-2)]k \\
&= \Ve{21,-12,2}
\shortintertext{solving for x using $p_0=P=(1,1,-1)$\ as an initial point we get the planar equation:}
d &= \Vn{n}\cdot (p_0) = 21(1)-12(1)+2(-1) = 21-12 - 2 = 7
\shortintertext{thus the equation for the plane is}
7 &= 21x_1-12x_2+2x_3
\shortintertext{verify for $Q,R$:}
7 &= 21(1)-12(2)+2(5)=21-24+10=7\\
7 &= 21(-1)-12(-3)+2(-4) = -21+36-8 = 7
\shortintertext{Find distance:}
7 &= 21(0+21d)-12(0-12d)+2(0+2d) \\
7 &= 441d + 144d + 4d = 589d \\
d &= \frac{7}{589}
\end{align*}
Is the distance between the origin and the plane $PQR$.
}
\newpage
\item Find the point on the plane $PQR$\ closest to the point $S=(1,1,3)$.
\Ans{
Using $\Vn{n}=\Ve{21,-12,2}$\ found above we can express the line perpendicular to $PQR$\ and thru $S$\ as
\begin{align*}
\Line{S} &= S + c\Vn{n} = (1,1,3)+c\Ve{21,-12,2} = \Ve{1+21c,1-12c,3+2c}
\shortintertext{for some scalar $c\in\mathbb{R}$. Our nearest point is the intersection between $PQR$\ and $\Line{S}$:}
7 &= 21(1+21c) - 12(1-12c) + 2(3+2c) \\
7 &= 21+441c-12+144c+6+4c = 589c+15 \\
c &= \frac{-8}{589}
\shortintertext{thus the nearest point $S^\prime$\ is}
S^\prime &= S + \frac{-8}{589}\Ve{21,-12,2} = (1,1,3) + \frac{1}{589}\Ve{-168, 96, -16} = \frac{1}{589}(421, 685, 1751)\\
&\approx \underline{(0.715, 1.163, 2.973)}
\shortintertext{verify:}
7 &= 21(0.715)-12(1.163)+2(2.973) \approx 7
\end{align*}
}
\end{enumerate}
~\\
\item Web traffic can be modeled using a graph: this consists of a set of points connected by edges.
We can represent the graph using an adjacency matrix $A$, where $a_{ij}=1$\ if there is a link from point $i$\ to point $j$.
Note that edges are directional, and $a_{ij}=1$\ does not necessarily imply $a_{ji}=1$. Use the figure below:
\begin{enumerate}[label=(\alph*)]
\item \Que{
Form the adjacency matrix $A$\ for the graph above.
}
\Ans{
\begin{align*}
A &= \begin{Mat}{4} 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \end{Mat}
\end{align*}
}
\item \Que{
A useful result is that the $ij$th entry of the matrix $A^n$\ will be the number of ways you can get from $i$\ to $j$\ via a path
of length $n$. Find $A^4$; determine the number of ways you can get from $1$\ to $4$\ using a path of length $4$; then list them by describing the sequence i.e. $1\to 4\to 3\to 1\to 4$.
}
\Ans{
\begin{align*}
A^2 &=\begin{Mat}{4} 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{Mat}
\begin{Mat}{4} 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{Mat}
=\begin{Mat}{4} 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1
\end{Mat}\\
A^4 &=\begin{Mat}{4}1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1
\end{Mat}
\begin{Mat}{4} 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1
\end{Mat}
=\begin{Mat}{4} 3 & 1 & 3 & 5 \\
0 & 1 & 2 & 1 \\
1 & 2 & 5 & 3 \\
2 & 0 & 1 & 3
\end{Mat}
\end{align*}
There are five ways to get from $1$\ to $4$\ in four steps:\\
$ 1 \to 2 \to 4 \to 3 \to 4 \\
1 \to 3 \to 1 \to 2 \to 4 \\
1 \to 3 \to 1 \to 3 \to 4 \\
1 \to 3 \to 4 \to 3 \to 4 \\
1 \to 4 \to 3 \to 1 \to 4$
}
\newpage
\item \Que{
Suppose $B$\ is an $N\times N$ adjacency matrix for a set of $N$\ connected web pages
(where it's always possible to find a path from one page to any other).
Prove, or explain why not true:
There is some $k$\ for which all entries of $B^k$\ are non-zero.
}
\Ans{
Since the graph is fully connected, for each element $B_{ij}$ of $B$\ where $i,j\in\{1,\cdots,N\}$\ are the row and column indexes, there exists some natural number $p_{ij}$\ such that $B^{p_{ij}}_{ij} \not = 0$. Since a complete cycle from any $B_{ij}$\ to $B_{ji}$\ and back can be looped an arbitrary number of times, it is also the case that $(B^{p_{ij}+p_{ji}}_{ij})^m\not = 0$\ for any $m\in\mathbb{N}$. Let \[k=\prod^N_{i=1}\prod^N_{j=i+1}p_{ij}+p_{ji}\] For each $B_{ij}$\ we see that $k=n(p_{ij}+p_{ji})$\ where $n\in\mathbb{N}$\ is the product of all cycle exponents except for $p_{ij}+p_{ji}$. Thus, the $k$th power of the adjacency matrix provides complete cycles for all entries, and thus all values are non-zero.
}
\end{enumerate}
~\\
\item Let $p_1(x)=x^2-3x-10, p_2(x)=5x+7, p_3(x)=x^2+12x+11$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Using standard polynomial addition, what polynomials $ax^2+bx+c$\ can be expressed as linear combinations of $p_1,p_2,p_3$?
}
\Ans{
\begin{align*}
p_n &= a(p_1)+b(p_2)+c(p_3)=a(x^2-3x-10)+b(5x+7)+c(x^2+12x+11)
\shortintertext{for $a,b,c\in\mathbb{R}$. Simplifying:}
p_n &= (a+c)x^2 + (5b+12c-3a)x + (7b+11c-10a)
\end{align*}
}
\item \Que {
Find a basis for the vector space spanned by $p_1,p_2,p_3$.
}
\Ans{
Using $\{x^2,x,1\}$\ as a basis for the set of all 2nd-degree polynomials, we can form a coefficient matrix $P$\ and row reduce:
\begin{align*}
P&=\begin{Mat}{3} 1 & -3 & -10 \\ 0 & 5 & 7 \\ 1 & 12 & 11 \end{Mat}
\to\begin{Mat}{3} 5 & -15 & -50 \\ 0 & 5 & 7 \\ 0 & 15 & 21 \end{Mat}
\to\begin{Mat}{3} 5 & 0 & 11 \\ 0 & 5 & 7 \\ 0 & 0 & 0 \end{Mat}
\end{align*}
Thus we see $p_1,p_2$\ are pivot columns and thus $\{x^2-3x-10,5x+7\}$\ form a basis for the vector space.
}
\newpage
\item \Que {
Remember that a set of vectors is independent iff the only linear combination to produce $\Vn{0}$\ is the trivial combination.
For these vectors, we could try to solve $a_1p_1(x)+a_2p_2(x)+a_3p_3(x)=0$.
Instead, we can form new equations by differentiation.
Explain how to form a system of equations with unknown constants $a_1,a_2,a_3$.
}
\Ans{
\begin{align*}
\shortintertext{Our first equation are the linear combinations of the original functions set to zero}
a_1(x^2-3x-10)+a_2(5x+7)+a_3(x^2+12x+11) &=0
\shortintertext{second equation is derivative of first:}
a_1(2x-3)+a_2(5)+a_3(2x+12) &=0
\shortintertext{third equation is derivative of second:}
a_1(2)+a_2(0)+a_3(2) &= 0
\end{align*}
Which we can form into a coefficient matrix:
\begin{align*}
A&=\begin{Mat}{3} x^2-3x-10 & 5x+7 & x^2+12x+11 \\
2x-3 & 5 & 2x+12 \\
2 & 0 & 2 \end{Mat}
\shortintertext{and find the determinant:}
\det A &= 2\left[(5x+7)(2x+12)-(x^2+12x+11)(5)\right] + 2\left[(x^2-3x-10)(5)-(5x+7)(2x-3)\right] \\
&= 2\left[10x^2+14x+60x+84-5x^2-60x-55\right] + 2\left[5x^2-15x-50-10x^2-14x+15x+21\right] \\
&= (10x^2+28x+58)-(10x^2+28x+58) \\
&= 0
\end{align*}
Thus since $\det A=0$\ it follows that there are an infinite number of solutions to the equations, and thus the functions $p_1,p_2,p_3$\ are dependent.
}
\item \Que{
Consider the vector space spanned by $\mathbb{V}=\{f_1(x),f_2(x),\cdots,f_n(x)\}$, where $f_i(x)$\ is a smooth function of $x$
(smooth means you can differentiate as many times as needed).
Explain how you could determine if the set of vectors is linearly independent.
}
\Ans{
for any two functions $f_1,f_2$, we can say they are dependent if there exists some $c\in\mathbb{R}$\ such that $f_1=cf_2$,
which can be written $\frac{f_1}{f_2}=c$.
This implies that the ratio between the two functions is constant, and differentiating both sides results in
\[\left(\frac{f_1}{f_2}\right)^\prime = 0\]
which evaluates to $f_1f_2^\prime-f_1^\prime f_2=0$. Note that if we form a matrix
\[A=\begin{Mat}{2} f_1 & f_2 \\ f_1^\prime & f_2^\prime \end{Mat}\]
We can see that the proceeding equation is equivalent to $\det A=0$.
This extends to $n$\ dimensions, using $n-1$\ derivatives of the functions as required to form an $n\times n$\ matrix to find the determinant. If this matrix $A$\ has a non-zero determinant, then only the trivial solution exists, and the functions $\{f_1,\cdots f_n\}$\ are independent. If the determinant is zero, then the functions are dependent.
}
\end{enumerate}
%~\\
\newpage
\item Given a set of vectors $\mathbb{V}=\{\Vn{v}_1,\Vn{v}_2,\cdots,\Vn{v}_n\}$, where the components of each vector are integers,
a lattice consists of the set of all linear combinations of $\mathbb{V}$\ whose coefficients are integers.
Let $\Vn{v}_1=\Ve{40,1}, \Vn{v}_2=\Ve{-1,39}$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Determine which of the following vectors are in a lattice: $\Ve{42,74},\Ve{198,234},\Ve{155,199}$.
}
\Ans{
Let $r,s\in\mathbb{R}$\ such that
\begin{align*}
\shortintertext{for $\Ve{42,74}$:}
40r-s &= 42\\
r + 39s &= 74 \\
s &= 40r-42 \\
r + 39(40r-42) &= 74 \\
1561r &= 1712 \\
r &= \frac{1712}{1561} \not\in \mathbb{Z}
\shortintertext{Thus $\Ve{42,74}$\ is not in a lattice of $\mathbb{V}$.}
\shortintertext{for $\Ve{198,234}$:}
40r-s &= 198\\
r + 39s &= 234 \\
s &= 40r-198 \\
r+39(40r-198) &= 234 \\
1561r &= 7956 \\
r &= \frac{7956}{1561} \not\in\mathbb{Z}
\shortintertext{Thus $\Ve{198,234}$\ is not in a lattice of $\mathbb{V}$.}
\shortintertext{For $\Ve{155,199}$:}
40r-s &= 155 \\
r+39s &= 199 \\
s &= 40r-155 \\
r+39(40r-155) &= 199 \\
1561r &= 6244 \\
r &= \frac{6244}{1561} = 4 \in\mathbb{Z}
\shortintertext{Now solve for s:}
s &= 40(4)-155 = 5 \in \mathbb{Z}
\shortintertext{Thus $\Ve{155,199}$\ is in a lattice of $\mathbb{V}$.}
\end{align*}
}
\newpage
\item \Que{
Given a lattice, the closest vector problem (CVP) requires us to find the lattice vector closest to a given vector.
For the points above which are not in the lattice, solve the CVP.
}
\Ans{
\begin{align*}
\shortintertext{For $\Vn{x}=\Ve{42,74}$:}
r &= \frac{1712}{1561} \approx 1.1217 \\
s &= 40\frac{1712}{1561}-42 = \frac{68480-65562}{1561} \approx 1.869
\shortintertext{My intuition is that the nearest integers to $r,s$\ will result in the nearest lattice point.}
\shortintertext{Try $r^\prime=1, s^\prime=2$.}
\Vn{x}^{\prime} &= \Ve{40,1} + 2\Ve{-1,39} = \Ve{38,79} \\
\norm{\Vn{x}-\Vn{x}^{\prime\prime}} &= \sqrt{4^2+(-5)^2} = \sqrt{41} \approx 6.4
\shortintertext{Thus $\Ve{38,79}$\ is the closest lattice point to $\Ve{42,74}$.}
\shortintertext{For $\Vn{y}=\Ve{198,234}$:}
r &= \frac{7956}{1561} \approx 5.097 \\
s &= \frac{318240-309078}{1561} \approx 5.869
\shortintertext{Try $r^\prime = 5, s^\prime=6$.}
\Vn{y}^\prime &= 5\Ve{40,1} + 6\Ve{-1,39} = \Ve{200-6,5+234} = \Ve{194,239} \\
\norm{\Vn{y}-\Vn{y}^\prime} &= \sqrt{4^2 + (-4)^2} = \sqrt{32} \approx 5.657
\shortintertext{Thus $\Ve{194,239}$\ is the closest lattice point to $\Ve{198,234}$.}
\end{align*}
}
\item \Que{
Consider the lattice formed by $\Vn{p}_1=\Ve{39,40},\Vn{p}_1=\Ve{77,119}$.
Determine which of the points in problem 4a are in the lattice, then solve the CVP for the others.
}
\Ans{
Observe that $\Vn{p}_1 = \Vn{v}_1+\Vn{v}_2$\ and $\Vn{p}_2 = 2\Vn{v}_1+3\Vn{v}_2$.
\begin{align*}
\shortintertext{For $\Vn{x}=\Ve{42,74}$:}
39r + 77s &= 42 \\
40r + 119s &= 74 \\
r &= \frac{42-77s}{39} \\
40(\frac{42-77s}{39}) + 119s &= 74 \\
1680 - 3080s + 4641s &= 2886 \\
1561s &= 2886-1680=1206 \\
s &= \frac{1206}{1561} \approx 0.7725 \not\in\mathbb{Z}\\
r &= \frac{42-77\frac{1206}{1561}}{39} = \frac{65562-92862}{60879} \approx -0.448
\shortintertext{Thus $\Ve{42,74}$\ is not a lattice point of $\mathbb{P}$.}
\shortintertext{Try $r_\prime=-1,s^\prime=1$:}
\Vn{x}^\prime &= -\Ve{39,40}+\Ve{77,119} = \Ve{38,79}
\shortintertext{This is the same closest lattice point as in $\mathbb{R}$.}
\shortintertext{For $\Vn{y}=\Ve{198,234}$:}
39r+77s &= 198 \\
40r+119s &= 234 \\
r &= \frac{198-77s}{39} \\
40\frac{198-77s}{39}+119s &= 234 \\
7920 - 3080s + 4641s &= 9126 \\
1561s &= 9126 - 7920 = 1206 \\
s &= \frac{1206}{1561} \approx 0.7725 \not\in\mathbb{Z} \\
r &= \frac{198-77\frac{1206}{1561}}{39} = \frac{309078-92862}{60879} \approx 3.552
\shortintertext{Thus $\Ve{198,234}$\ is not a lattice point of $\mathbb{P}$.}
\shortintertext{Try $r^\prime=3, s^\prime=1$:}
\Vn{y}^\prime &= 3\Ve{39,40}+\Ve{77,119} = \Ve{194,239}
\shortintertext{This is the same closest lattice point as in $\mathbb{V}$.}
\shortintertext{For $\Vn{z}=\Ve{155,199}$:}
39r + 77s &= 155 \\
40r + 119s&= 199 \\
r &= \frac{155-77s}{39} \\
40\frac{155-77s}{39}+119s &= 199\\
6200 - 3080s + 4641s &= 7761 \\
s &= \frac{1561}{1561} = 1 \in\mathbb{Z}\\
r &= \frac{155-77}{39} = 2 \in\mathbb{Z}
\shortintertext{Thus $\Ve{155,199}$\ is a lattice point in $\mathbb{P}$.}
\end{align*}
}
\item \Que{
As it turns out, the lattice spanned by the $\Vn{v}_i$\'s is the same lattice spanned by the $\Vn{p}_i$'s. Prove this.
(Suppose $\Vn{x}$\ can be expressed as a linear combination with integer coefficients of $\Vn{v}$'s.
Show that $\Vn{x}$\ can be expressed as a linear combination with integer coefficients of $\Vn{p}$'s,
then show that the converse is true.
}
\Ans{
Let $S = \begin{Mat}{2} 1 & 2 \\ 1 & 3 \end{Mat}$\ be the matrix formed with the coefficients of $\Vn{p}_i=a_i\Vn{v}_1+b_i\Vn{v}_2$\ as columns. Then
\begin{align*}
S^{-1} &= \frac{1}{3-2}\begin{Mat}{2} 3 & -1 \\ -2 & 1 \end{Mat} = \begin{Mat}{2} 3 & -1 \\ -2 & 1 \end{Mat}
\shortintertext{Is the translation matrix between the basis $\mathbb{V}$\ and $\mathbb{P}$.}
\shortintertext{Let $\Vn{x}$\ be a lattice point of $\mathbb{V}$\ such that the coefficients $x_1,x_2\in\mathbb{Z}$.}
\Vn{x}_\mathbb{P} &= \begin{Mat}{2} 3 & -1 \\ -2 & 1 \end{Mat}\begin{Mat}{1} x_1 \\ x_2 \end{Mat}
= \begin{Mat}{1} 3x_1-x_2 \\ -2x_1+x_2 \end{Mat}
\shortintertext{Since $x_1,x_2\in\mathbb{Z}$, it follows that $3x_1-x_2,-2x_1+x_2\in\mathbb{Z}$\ thus $\Vn{x}$\ is in the lattice of $\mathbb{P}$.}
\shortintertext{Let $\Vn{y}$\ be a lattice point of $\mathbb{P}$\ such that the coefficients $y_1,y_2\in\mathbb{Z}$.}
S\Vn{y}_\mathbb{V} &= \begin{Mat}{2} 1 & 2 \\ 1 & 3 \end{Mat}\begin{Mat}{1} y_1 \\ y_2 \end{Mat}
= \begin{Mat}{1} y_1+2y_2 \\ y_1+3y_2 \end{Mat}
\shortintertext{Since $y_1,y_2\in\mathbb{Z}$, it follows that $y_1+2y_2,y_1+3y_2\in\mathbb{Z}$\ thus $\Vn{y}$\ is in the lattice of $\mathbb{V}$.}
\end{align*}
Therefore $\mathbb{V},\mathbb{P}$\ span the same lattice.
}
\item \Que{
Identify an important difference between the vectors $\Vn{v}_i$\ and the vectors $\Vn{p}_i$.
Suggestion: Given the set of vectors $\Vn{v}_i$, what questions could you ask about them?
Then ask the same question about the vectors $\Vn{p}_i$.
}
\Ans{
Both sets of vectors are independent.\\
Neither set of vectors is orthogonal.\\
Both sets of vectors form a basis for $\mathbb{R}^2$.\\
Both sets of vectors have non-zero determinant.\\
$\mathbb{V}$\ has complex eigenvalues:
\begin{align*}
\norm{V-\lambda I} &= \begin{vmatrix} 40-\lambda & -1 \\ 1 & 39-\lambda \end{vmatrix}
= (40-\lambda)(39-\lambda)-(-1)(1)
= \lambda^2-79\lambda+1561
= 0
\shortintertext{use quadratic equation to find roots:}
r_\mathbb{V} &= \frac{-(-79)\pm\sqrt{(-79)^2-4(1)(1561)}}{2}
= \frac{79\pm\sqrt{-3}}{2} \in \mathbb{C}
\shortintertext{$\mathbb{P}$\ has real eigenvalues:}
\norm{P-\lambda I} &= \begin{vmatrix} 39-\lambda & 77 \\ 40 & 119-\lambda \end{vmatrix}
= (39-\lambda)(119-\lambda)-(77)(40)
= \lambda^2-158\lambda+1561
= 0
\shortintertext{use quadratic equation to find roots:}
r_\mathbb{P} &= \frac{-(-158)\pm\sqrt{(-158)^2-4(1)(1561)}}{2}
= \frac{158\pm\sqrt{18720}}{2} \in\mathbb{R}
\end{align*}
}
\end{enumerate}
~\\
\item Let $A=\begin{Mat}{2} 6 & -5 \\ 10 & -9 \end{Mat}$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Find the eigenvalues and corresponding eigenvectors of $A$.
Refer to these as $\lambda_1, \lambda_2, \Vn{v}_1, \Vn{v}_2$\ for the following questions.
}
\Ans{
\begin{align*}
\norm{(A-\lambda I)} &= (6-\lambda)(-9-\lambda)-(-5)(10) = \lambda^2 +3\lambda-4 = (\lambda+4)(\lambda-1)=0
\shortintertext{thus $\lambda_1=-4$\ and $\lambda_2=1$. Now find $\Vn{v}_1$\ for $\lambda_1=-4$: }
&\begin{Mat}{2} 6-(-4) & -5 \\ 10 & -9-(-4) \end{Mat} \to
\begin{Mat}{2} 10 & -5 \\ 10 & -5 \end{Mat} \to
\begin{Mat}{2} 2 & -1 \\ 0 & 0 \end{Mat}
\shortintertext{thus $\Vn{v}_1=\Ve{1,2}$. Now find $\Vn{v}_2$\ for $\lambda_2=1$:}
&\begin{Mat}{2} 6-1 & -5 \\ 10 & -9-1 \end{Mat} \to
\begin{Mat}{2} 5 & -5 \\ 10 & -10 \end{Mat} \to
\begin{Mat}{2} 1 & -1 \\ 0 & 0 \end{Mat}
\shortintertext{thus $\Vn{v}_2=\Ve{1,1}$.}
\end{align*}
}
\newpage
\item \Que{
Prove or disprove: The set of eigenvectors you found are independent.
}
\Ans{
Suppose for the sake of contradiction that the eigenvectors are not independent.
Then we can express each in terms of the other (for some $c,d\in\mathbb{R}$):
\begin{align*}
\Vn{v}_1 &= c\Vn{v}_2 \\
\Ve{1,2} &= c\Ve{1,1} \\
\Vn{v}_2 &= d\Vn{v}_2 \\
\Ve{1,1} &= d\Ve{1,2}
\end{align*}
Solving this we get $c=1$\ and also $c=2$\; and $d=1$\ and also $d=0.5$\ and thus we have reached a contradiction.
Therefore the eigenvectors are independent.
}
%\newpage
\item \Que{
Prove or disprove: The set of eigenvectors you found span $\mathbb{R}^2$.
}
\Ans{
Let $\Vn{x} \in \mathbb{R}^2$. We want to find $a,b\in\mathbb{R}$\ such that
\begin{align*}
\Vn{x} &= a\Ve{1,2}+b\Ve{1,1} \\
x_1 &= a+b \\
x_2 &= 2a+b
\shortintertext{and we define the augmented matrix $X$\ as}
X &= \begin{Amat}{2} 1 & 1 & x_1 \\ 2 & 1 & x_2 \end{Amat}
\to \begin{Amat}{2} 1 & 1 & x_1 \\ 0 & 1 & 2x_1-x_2 \end{Amat}
\to \begin{Amat}{2} 1 & 0 & x_2-x_1 \\ 0 & 1 & 2x_1-x_2 \end{Amat}
\end{align*}
Thus we have found coefficients $a=x_2-x_1$\ and $b=2x_1-x_2$\ and thus the eigenvectors span $\mathbb{R}^2$.
}
\item \Que{
Let $\Vn{x}=x_1\Vn{v}_1 + x_2\Vn{v}_2$. Find $A^{100}\Vn{x}$.
}
\Ans{
\begin{align*}
A^{100}\Vn{x} &= x_1\lambda_1^{100}\Vn{v}_1 + x_2\lambda_2^{100}\Vn{v}_2 \\
&= x_1(-4)^{100}\Ve{1,2} + x_2(1)^{100}\Ve{1,1}\\
&= x_1\Ve{2^{200},2^{201}} + x_2\Ve{1,1} \\
&= \Ve{2^{200}x_1+x_2,2^{201}x_1+x_2}
\end{align*}
}
\item \Que{
If possible, set up and solve the system of equations that would allow you to express any vector $\Vn{x}$\ as a linear combination
of the eigenvectors $\Vn{v}_1,\Vn{v}_2$.
}
\Ans{
This is a task analogous to assignment five problem 2c. Let $\Vn{x}=\Ve{x_1,x_2}\in\mathbb{R}^2$\\
Let $S=\begin{Mat}{2}1 & 1 \\ 2 & 1 \end{Mat}$\ be the matrix formed with $\Vn{v}_1,\Vn{v}_2$\ as columns, then
\begin{align*}
S^{-1}&=\frac{1}{1-2}\begin{Mat}{2} 1 & -1 \\ -2 & 1 \end{Mat} = \begin{Mat}{2} -1 & 1 \\ 2 & -1 \end{Mat}
\shortintertext{Is the matrix which transforms a vector from standard basis to the eigenbasis. Thus the system:}
x_1^\prime &= -x_1+x_2 \\
x_2^\prime &= 2x_1-x_2
\shortintertext{Is the system of equations to express any $\Vn{x}$\ as a linear combination of the eigenvectors:}
\Vn{x} &= x_1^\prime\Vn{v}_1+x_2^\prime\Vn{v}_2 = (x_2-x_1)\Vn{v}_1 + (2x_1-x_2)\Vn{v}_2
\end{align*}
}
\newpage
\item \Que{
Let $\Vn{y}=\begin{Mat}{1} 3 \\ 1 \end{Mat}$. Find $A^{100}\Vn{y}$.
}
\Ans{
\begin{align*}
\shortintertext{first transform into the eigen basis coordinates:}
\Vn{y}_S &= S^{-1}\Vn{y} = \begin{Mat}{2} -1 & 1 \\ 2 & -1 \end{Mat} \begin{Mat}{1} 3 \\ 1 \end{Mat}
= \begin{Mat}{1} -2 \\ 5 \end{Mat}
\shortintertext{then apply the transformation as eigenvalue multiplication}
A^{100}\Vn{y}_S &= (-2)\lambda_1^{100}\Vn{v}_1 + (5)\lambda_2^{100}\Vn{v}_2 \\
&= (-2)(-4)^{100}\Ve{1,2}+ (5)(1)^{100}\Ve{1,1} \\
&= \Ve{5-2^{201},5-2^{202}}
\shortintertext{Now return to standard basis coordinates:}
A^{100}\Vn{y} &= SA^{100}\Vn{y}_S = \begin{Mat}{2} 1 & 1 \\ 2 & 1 \end{Mat} \begin{Mat}{1} 5-2^{201} \\ 5-2^{202} \end{Mat}
= \begin{Mat}{1} (5-2^{201})-(5-2^{202}) \\ (10-2^{202})-(5-2^{202}) \end{Mat} \\
&= \begin{Mat}{1} 2^{201} \\ 5 \end{Mat}
\end{align*}
}
\end{enumerate}
\end{enumerate}
\end{document}