|
| 1 | +from typing import Dict, List, Optional, Tuple |
| 2 | + |
| 3 | +import matplotlib.dates as mdates |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +from mplfinance.original_flavor import candlestick_ohlc |
| 8 | + |
| 9 | + |
| 10 | +def generate_candlestick_chart( |
| 11 | + data_dict: Dict[str, List], |
| 12 | + output_file: str = "candle_stick.svg", |
| 13 | + width: float = 0.6, |
| 14 | + colorup: str = "g", |
| 15 | + colordown: str = "r", |
| 16 | + title: str = "Stock Price Candlestick Chart", |
| 17 | + show_volume: bool = False, |
| 18 | +) -> Tuple[plt.Figure, plt.Axes]: # type: ignore |
| 19 | + """ |
| 20 | + Generate and save a candlestick chart from OHLC (Open, High, Low, Close) data. |
| 21 | +
|
| 22 | + Parameters |
| 23 | + ---------- |
| 24 | + data_dict : Dict[str, List] |
| 25 | + Dictionary with keys 'Date', 'Open', 'High', 'Low', 'Close' |
| 26 | + containing the trading data. Optional key 'Volume' for volume data. |
| 27 | + output_file : str, optional |
| 28 | + Filename to save the chart, by default "candle_stick.svg" |
| 29 | + width : float, optional |
| 30 | + Width of the candlesticks, by default 0.6 |
| 31 | + colorup : str, optional |
| 32 | + Color for upward price movements, by default "g" |
| 33 | + colordown : str, optional |
| 34 | + Color for downward price movements, by default "r" |
| 35 | + title : str, optional |
| 36 | + Title for the chart, by default "Stock Price Candlestick Chart" |
| 37 | + show_volume : bool, optional |
| 38 | + Whether to display volume data in a subplot, by default False |
| 39 | +
|
| 40 | + Returns |
| 41 | + ------- |
| 42 | + Tuple[plt.Figure, plt.Axes] |
| 43 | + Figure and Axes objects of the created chart |
| 44 | +
|
| 45 | + Examples |
| 46 | + -------- |
| 47 | + >>> data = { |
| 48 | + >>> "Date": ["2021-01-01", "2021-01-02"], |
| 49 | + >>> "Open": [100, 102], |
| 50 | + >>> "High": [105, 106], |
| 51 | + >>> "Low": [99, 101], |
| 52 | + >>> "Close": [104, 105] |
| 53 | + >>> } |
| 54 | + >>> fig, ax = generate_candlestick_chart(data) |
| 55 | + """ |
| 56 | + array_lengths = [len(arr) for arr in data_dict.values()] |
| 57 | + if len(set(array_lengths)) > 1: |
| 58 | + raise ValueError("All arrays in data_dict must be of the same length") |
| 59 | + |
| 60 | + df = pd.DataFrame(data_dict) |
| 61 | + df["Date"] = pd.to_datetime(df["Date"]) |
| 62 | + df["Date_num"] = df["Date"].apply(mdates.date2num) # type: ignore |
| 63 | + |
| 64 | + ohlc = df[["Date_num", "Open", "High", "Low", "Close"]].values |
| 65 | + |
| 66 | + if show_volume and "Volume" in data_dict: |
| 67 | + fig, (ax1, ax2) = plt.subplots( |
| 68 | + 2, 1, figsize=(12, 8), gridspec_kw={"height_ratios": [3, 1]}, sharex=True |
| 69 | + ) |
| 70 | + |
| 71 | + candlestick_ohlc( |
| 72 | + ax1, ohlc, width=width, colorup=colorup, colordown=colordown, alpha=0.8 |
| 73 | + ) |
| 74 | + |
| 75 | + ax1.xaxis_date() |
| 76 | + ax1.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d")) |
| 77 | + |
| 78 | + ax1.grid(True, linestyle="--", alpha=0.6) |
| 79 | + ax1.set_title(title, fontsize=14) |
| 80 | + ax1.set_ylabel("Price", fontsize=12) |
| 81 | + |
| 82 | + ax2.bar(df["Date_num"], df["Volume"], width=width, color="blue", alpha=0.4) |
| 83 | + ax2.set_ylabel("Volume", fontsize=12) |
| 84 | + ax2.set_xlabel("Date", fontsize=12) |
| 85 | + ax2.grid(True, linestyle="--", alpha=0.4) |
| 86 | + |
| 87 | + plt.xticks(rotation=45) |
| 88 | + ax = ax1 |
| 89 | + else: |
| 90 | + fig, ax = plt.subplots(figsize=(12, 6)) |
| 91 | + candlestick_ohlc( |
| 92 | + ax, ohlc, width=width, colorup=colorup, colordown=colordown, alpha=0.8 |
| 93 | + ) |
| 94 | + |
| 95 | + ax.xaxis_date() |
| 96 | + ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m-%d")) |
| 97 | + plt.xticks(rotation=45) |
| 98 | + |
| 99 | + ax.grid(True, linestyle="--", alpha=0.6) |
| 100 | + ax.set_title(title, fontsize=14) |
| 101 | + ax.set_xlabel("Date", fontsize=12) |
| 102 | + ax.set_ylabel("Price", fontsize=12) |
| 103 | + |
| 104 | + plt.tight_layout() |
| 105 | + plt.savefig(output_file) |
| 106 | + |
| 107 | + return fig, ax |
| 108 | + |
| 109 | + |
| 110 | +def generate_sample_data( |
| 111 | + start_date: str = "2021-01-01", |
| 112 | + end_date: str = "2021-01-31", |
| 113 | + start_price: float = 100.0, |
| 114 | + volatility: float = 0.02, |
| 115 | + seed: Optional[int] = 42, |
| 116 | +) -> Dict[str, List]: |
| 117 | + """ |
| 118 | + Generate sample OHLCV data for stock price simulation. |
| 119 | +
|
| 120 | + Parameters |
| 121 | + ---------- |
| 122 | + start_date : str, optional |
| 123 | + Start date for the data in YYYY-MM-DD format, by default "2021-01-01" |
| 124 | + end_date : str, optional |
| 125 | + End date for the data in YYYY-MM-DD format, by default "2021-01-31" |
| 126 | + start_price : float, optional |
| 127 | + Starting price for the simulation, by default 100.0 |
| 128 | + volatility : float, optional |
| 129 | + Daily price volatility as a decimal, by default 0.02 (2%) |
| 130 | + seed : Optional[int], optional |
| 131 | + Random seed for reproducibility, by default 42 |
| 132 | +
|
| 133 | + Returns |
| 134 | + ------- |
| 135 | + Dict[str, List] |
| 136 | + Dictionary with keys 'Date', 'Open', 'High', 'Low', 'Close', 'Volume' |
| 137 | + containing the generated trading data |
| 138 | +
|
| 139 | + Examples |
| 140 | + -------- |
| 141 | + >>> data = generate_sample_data(start_date="2021-01-01", end_date="2021-01-10") |
| 142 | + >>> len(data["Date"]) # Number of trading days |
| 143 | + """ |
| 144 | + if seed is not None: |
| 145 | + np.random.seed(seed) |
| 146 | + |
| 147 | + all_dates = pd.date_range(start=start_date, end=end_date) |
| 148 | + trading_dates = all_dates[all_dates.dayofweek < 5] # 0-4 are Monday to Friday |
| 149 | + dates = [d.strftime("%Y-%m-%d") for d in trading_dates] |
| 150 | + |
| 151 | + opens = [] |
| 152 | + closes = [] |
| 153 | + highs = [] |
| 154 | + lows = [] |
| 155 | + volumes = [] |
| 156 | + |
| 157 | + current_price = start_price |
| 158 | + for i in range(len(dates)): |
| 159 | + if i == 0: |
| 160 | + opens.append(current_price) |
| 161 | + else: |
| 162 | + opens.append(closes[i - 1]) |
| 163 | + |
| 164 | + price_change = np.random.normal(0, volatility * opens[i]) |
| 165 | + |
| 166 | + if opens[i] > start_price * 1.1: |
| 167 | + price_change -= volatility * opens[i] * 0.05 |
| 168 | + elif opens[i] < start_price * 0.9: |
| 169 | + price_change += volatility * opens[i] * 0.05 |
| 170 | + |
| 171 | + close = opens[i] + price_change |
| 172 | + closes.append(round(close, 2)) |
| 173 | + |
| 174 | + daily_range = abs(price_change) + (volatility * opens[i]) |
| 175 | + high = max(opens[i], close) + abs(np.random.normal(0, daily_range / 2)) |
| 176 | + low = min(opens[i], close) - abs(np.random.normal(0, daily_range / 2)) |
| 177 | + |
| 178 | + highs.append(round(high, 2)) |
| 179 | + lows.append(round(low, 2)) |
| 180 | + |
| 181 | + base_volume = 100000 |
| 182 | + vol_factor = 1.0 + 2.0 * (abs(price_change) / (volatility * opens[i])) |
| 183 | + volume = int(base_volume * vol_factor * np.random.uniform(0.8, 1.2)) |
| 184 | + volumes.append(volume) |
| 185 | + |
| 186 | + return { |
| 187 | + "Date": dates, |
| 188 | + "Open": opens, |
| 189 | + "High": highs, |
| 190 | + "Low": lows, |
| 191 | + "Close": closes, |
| 192 | + "Volume": volumes, |
| 193 | + } |
| 194 | + |
| 195 | + |
| 196 | +if __name__ == "__main__": |
| 197 | + data = generate_sample_data( |
| 198 | + start_date="2021-01-01", |
| 199 | + end_date="2021-03-31", |
| 200 | + start_price=100.0, |
| 201 | + volatility=0.015, |
| 202 | + ) |
| 203 | + |
| 204 | + fig, ax = generate_candlestick_chart( |
| 205 | + data, output_file="candle_stick.svg", show_volume=False |
| 206 | + ) |
| 207 | + print(f"Generated basic candlestick chart with {len(data['Date'])} trading days.") |
| 208 | + |
| 209 | + fig, ax = generate_candlestick_chart( |
| 210 | + data, |
| 211 | + output_file="candle_stick_with_volume.svg", |
| 212 | + show_volume=True, |
| 213 | + title="Stock Price with Volume", |
| 214 | + ) |
| 215 | + print("Generated candlestick chart with volume.") |
0 commit comments