-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomputeWSC_ZF_NUAV.m
92 lines (74 loc) · 3.37 KB
/
computeWSC_ZF_NUAV.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function [WSC_Val, DeltaComp] = computeWSC_ZF_NUAV(A, E, UAVs, dAB, gammaA, gammaJ, channelParam )
% A: Alice's Position 1x3
% B: Bob's Position 1x3
% E: Eve's Positions nEx3
% UAV1: Position of UAV1 1x3
% UAV2: Position of UAV2 1x3
% Rj: Orbit radius of UAVs 1x1
% hj: UAVs height 1x1
% dAB: Distance from A to B 1x3 Can be actual or estimated
% gammaA: Tx SNR at A 1x1
% gammaJ: Tx SNR at UAVs 1x1
% channelParam: Channel and PL parameters
nUAV = size(UAVs,1);
N = nUAV/2;
B = A;
B(1) = B(1) + dAB;
% Channel parameters
phi = channelParam(1);
omega = channelParam(2);
alpha = channelParam(3);
alpha_AG = channelParam(4);
ne_LOS = channelParam(5);
ne_NLOS = channelParam(6);
Rs = channelParam(7);
k = channelParam(8); % Number of rays of Nakagami channel (m) TO IMPLEMENT
choice = channelParam(10); % Choice of which channel to use(0: Rayleigh, 1: Nakagami-m) TO IMPLEMENT
% Parameters regarding Eve
dAE = transpose(sqrt( ( A(:,1) - E(:,1) ).^2 + ( A(:,2) - E(:,2) ).^2 ));
OmegaAE = dAE.^alpha;
% UAVs
dJE = sqrt( ( UAVs(:,1) - E(:,1)' ).^2 + ( UAVs(:,2) - E(:,2)' ).^2 + ( UAVs(:,3) - E(:,3)' ).^2);
Theta_JE = (180/pi) * asin(UAVs(:,3)./dJE);
PLOS_JE = 1./(1 + phi * exp( -omega*( Theta_JE - phi ) ) );
LJE = PLOS_JE.*(abs(dJE).^alpha_AG)*ne_LOS + (1-PLOS_JE).*(abs(dJE).^alpha_AG)*ne_NLOS;
gJE = 1./LJE;
hJE = sqrt(gJE);
aNJ = gammaA;
bNJ = gammaA;
% Parameters regarding Bob
OmegaAB = dAB.^alpha;
dJB = sqrt( ( UAVs(:,1) - B(1) ).^2 + ( UAVs(:,2) - B(2) ).^2 + ( UAVs(:,3) - B(3) ).^2);
Theta_JB = (180/pi) * asin(UAVs(:,3)./dJB);
PLOS_JB = 1./(1 + phi * exp( -omega*( Theta_JB - phi ) ) );
LJB = PLOS_JB.*(abs(dJB).^alpha_AG)*ne_LOS + (1-PLOS_JB).*(abs(dJB).^alpha_AG)*ne_NLOS;
gJB = 1./LJB;
hJB = sqrt(gJB);
% Secrecy metrics
g_INT = 0;
for i=1:N
h_INT = hJB(2*i)*hJE(2*i - 1,:) - hJB(2*i - 1)*hJE(2*i,:);
g_INT = g_INT + abs(h_INT).^2;
end
% h_INT = hJE1*hJB2 -hJE2*hJB1;
% g_INT = abs(h_INT).^2;
aJ = gammaA;
bJ = gammaA ./ ( 1 + gammaJ*g_INT );
beta = ((2.^Rs)-1)./aJ;
eta = (2.^Rs)./ ( 1 + gammaJ*g_INT );
% eta = (2.^Rs).*(bJ./aJ);
switch choice
case 0
SOP_J = 1 - (exp( -(OmegaAB./aJ ).*(2^Rs - 1) ))*( 1 ./ ( (2^Rs)*(OmegaAB./OmegaAE).*( bJ./aJ ) + 1 ) );
SOP_NJ = 1 - (exp( -(OmegaAB./aNJ).*(2^Rs - 1) ))*( 1 ./ ( (2^Rs)*(OmegaAB./OmegaAE).*(bNJ./aNJ) + 1 ) );
case 1
% SOP_J = SOP_NakagamiM(aJ,bJ,k,1./OmegaAB,1./OmegaAE,Rs);
% SOP_NJ = SOP_NakagamiM(aNJ,bNJ,k,1./OmegaAB,1./OmegaAE,Rs);
SOP_J = SOP_NakagamiM_N(beta, eta, 1./OmegaAB, 1./OmegaAE, k, k ,1);
SOP_NJ = SOP_NakagamiM_N((2.^Rs-1)/gammaA, 2.^Rs, 1./OmegaAB, 1./OmegaAE, k, k ,1);
end
DeltaComp = (1-SOP_J)./(1-SOP_NJ);
coverage = sum( DeltaComp(:)>1);
efficiency = mean( DeltaComp(:) );
WSC_Val = coverage*efficiency;
end