-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnpnet_pipeline.py
168 lines (116 loc) · 5.93 KB
/
npnet_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import random
import torch
import argparse
import torch.nn as nn
import numpy as np
from PIL import Image
from diffusers.models.normalization import AdaGroupNorm
from diffusers import DDIMScheduler, DPMSolverMultistepScheduler, \
DDPMScheduler, StableDiffusionXLPipeline, HunyuanDiTPipeline
from model import NoiseTransformer, SVDNoiseUnet
class NPNet(nn.Module):
def __init__(self, model_id, pretrained_path=True, device='cuda') -> None:
super(NPNet, self).__init__()
assert model_id in ['SDXL', 'DreamShaper', 'DiT']
self.model_id = model_id
self.device = device
self.pretrained_path = pretrained_path
(
self.unet_svd,
self.unet_embedding,
self.text_embedding,
self._alpha,
self._beta
) = self.get_model()
def get_model(self):
unet_embedding = NoiseTransformer(resolution=128).to(self.device).to(torch.float32)
unet_svd = SVDNoiseUnet(resolution=128).to(self.device).to(torch.float32)
if self.model_id == 'DiT':
text_embedding = AdaGroupNorm(1024 * 77, 4, 1, eps=1e-6).to(self.device).to(torch.float32)
else:
text_embedding = AdaGroupNorm(2048 * 77, 4, 1, eps=1e-6).to(self.device).to(torch.float32)
if '.pth' in self.pretrained_path:
gloden_unet = torch.load(self.pretrained_path)
unet_svd.load_state_dict(gloden_unet["unet_svd"])
unet_embedding.load_state_dict(gloden_unet["unet_embedding"])
text_embedding.load_state_dict(gloden_unet["embeeding"])
_alpha = gloden_unet["alpha"]
_beta = gloden_unet["beta"]
print("Load Successfully!")
return unet_svd, unet_embedding, text_embedding, _alpha, _beta
else:
assert ("No Pretrained Weights Found!")
def forward(self, initial_noise, prompt_embeds):
prompt_embeds = prompt_embeds.float().view(prompt_embeds.shape[0], -1)
text_emb = self.text_embedding(initial_noise.float(), prompt_embeds)
encoder_hidden_states_svd = initial_noise
encoder_hidden_states_embedding = initial_noise + text_emb
golden_embedding = self.unet_embedding(encoder_hidden_states_embedding.float())
golden_noise = self.unet_svd(encoder_hidden_states_svd.float()) + (
2 * torch.sigmoid(self._alpha) - 1) * text_emb + self._beta * golden_embedding
return golden_noise
def get_args():
parser = argparse.ArgumentParser()
# model and dataset construction
parser.add_argument('--pipeline', default='SDXL',
choices=['SDXL', 'DreamShaper', 'DiT'], type=str)
parser.add_argument('--prompt', default='A banana on the left of an apple.', type=str)
parser.add_argument("--inference-step", default=50, type=int)
# for dreamershaper is 3.5, remaining is 5.5, DiT is 5.0
parser.add_argument("--cfg", default=5.5, type=float)
# model pretrained weight path
parser.add_argument('--pretrained-path', type=str,
default='xxx')
parser.add_argument("--size", default=1024, type=int)
args = parser.parse_args()
print("generating config:")
print(f"Config: {args}")
print('-' * 100)
return args
def main(args):
dtype = torch.float16
device = torch.device('cuda')
if args.pipeline == 'SDXL':
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
variant="fp16",use_safetensors=True,
torch_dtype=torch.float16).to(device)
elif args.pipeline == 'DreamShaper':
pipe = StableDiffusionXLPipeline.from_pretrained("lykon/dreamshaper-xl-v2-turbo",
torch_dtype=torch.float16,
variant="fp16").to(device)
else:
pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers",
torch_dtype=torch.float16).to(device)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
# create the initial noise
latent = torch.randn(1, 4, 128, 128, dtype=dtype).to(device)
# use the pre-trained text encoder in T2I models to encode prompts
prompt_embeds, _, _, _= pipe.encode_prompt(prompt=args.prompt, device=device)
# create NPNet to get the target noise
npn_net = NPNet(args.pipeline, args.pretrained_path)
golden_noise = npn_net(latent, prompt_embeds)
# standard inference pipeline
latent = latent.half()
golden_noise = golden_noise.half()
pipe = pipe.to(torch.float16)
standard_img = pipe(
prompt=args.prompt,
height=args.size,
width=args.size,
num_inference_steps=args.inference_step,
guidance_scale=args.cfg,
latents=latent).images[0]
golden_img = pipe(
prompt=args.prompt,
height=args.size,
width=args.size,
num_inference_steps=args.inference_step,
guidance_scale=args.cfg,
latents=golden_noise).images[0]
# image save path
standard_img.save(f"{args.pipeline}_{args.prompt}_standard_image.jpg")
golden_img.save(f"{args.pipeline}_{args.prompt}_golden_image.jpg")
if __name__ == '__main__':
args = get_args()
main(args)