## calculate mapped reads in each region of 11 chromosomes for opium poppy
bedtools makewindows -g poppy.genome -w 20000 > poppy.windows
multiBamSummary BED-file --BED ./chr/poppy.windows --bamfiles ./*.bam --numberOfProcessors 20 -out ./chr/readCounts.npz --outRawCounts ./chr/readCounts.tab
library(FactoMineR)
library(corrplot)
library(factoextra)
atac_seq <- read.csv("D:/001poppy_atac_new_genome/ATAC_peak/atac_peak_cor/readCounts.tab",sep = "\t",stringsAsFactors = F)
atac_seq <- atac_seq[,-1:-3]
colnames(atac_seq) <- c("Capsule_1","Capsule_2","Capsule_3",
"Stem_1","Stem_2","Stem_3",
"Fine Root_1","Fine Root_2","Fine Root_3",
"Leaf_1","Leaf_2","Leaf_3",
"Tap Root_1","Tap Root_2","Tap Root_3",
"Petal_1","Petal_2","Petal_3")
plot_atac_seq <- as.data.frame(t(atac_seq))
dim(plot_atac_seq)
plot_atac_seq[,108632] <- c("Capsule","Capsule","Capsule",
"Stem","Stem","Stem",
"Fine Root","Fine Root","Fine Root",
"Leaf","Leaf","Leaf",
"Tap Root","Tap Root","Tap Root",
"Petal","Petal","Petal")
colnames(plot_atac_seq)[108632] <- "Tissue"
atac_seq_pca <- FactoMineR::PCA(t(atac_seq),scale.unit = FALSE, graph = FALSE,ncp=10)
fviz_eig(atac_seq_pca,addlabels = T)
fviz_pca_ind(atac_seq_pca,axes = c(1,2),labelsize =6,
habillage = factor(plot_atac_seq$Tissue),
palette = c("#E41A1C", "#377EB8" ,"#4DAF4A" ,"#984EA3" ,"#FF7F00" ,"#A65628"),
invisible='quali'
) +
ggforce::geom_mark_ellipse(aes(fill = Groups,
color = Groups)) +
theme(legend.position = 'bottom') +
coord_equal()