|
1 | 1 | import time |
2 | 2 | import numpy as np |
3 | 3 | from scipy import constants |
4 | | -protonMass = constants.value('proton mass energy equivalent in MeV')*1E6 |
| 4 | + |
| 5 | +protonMass = constants.value("proton mass energy equivalent in MeV") * 1e6 |
5 | 6 | from scipy.stats import linregress |
6 | 7 | from scipy.signal import hilbert |
7 | 8 | from matplotlib import pyplot as plt |
|
20 | 21 |
|
21 | 22 | context = xo.ContextCpu(omp_num_threads=1) |
22 | 23 |
|
23 | | -nTurn = 3000 #int(1E4) |
24 | | -bunch_intensity = 1.8E11 |
25 | | -n_macroparticles = int(1e5) #int(1E4) |
26 | | -energy = 7E3 # [GeV] |
27 | | -gamma = energy*1E9/protonMass |
28 | | -betar = np.sqrt(1-1/gamma**2) |
29 | | -normemit = 1.8E-6 |
| 24 | +nTurn = 3000 # int(1E4) |
| 25 | +bunch_intensity = 1.8e11 |
| 26 | +n_macroparticles = int(1e5) # int(1E4) |
| 27 | +energy = 7e3 # [GeV] |
| 28 | +gamma = energy * 1e9 / protonMass |
| 29 | +betar = np.sqrt(1 - 1 / gamma ** 2) |
| 30 | +normemit = 1.8e-6 |
30 | 31 | beta_x = 68.9 |
31 | 32 | beta_y = 70.34 |
32 | 33 | Q_x = 0.31 |
33 | 34 | Q_y = 0.32 |
34 | | -chroma = -5. #10.0 |
35 | | -sigma_4t = 1.2E-9 |
36 | | -sigma_z = sigma_4t/4.0*constants.c |
| 35 | +chroma = -5.0 # 10.0 |
| 36 | +sigma_4t = 1.2e-9 |
| 37 | +sigma_z = sigma_4t / 4.0 * constants.c |
37 | 38 | momentumCompaction = 3.483575072011584e-04 |
38 | | -eta = momentumCompaction-1.0/gamma**2 |
39 | | -voltage = 12.0E6 |
| 39 | +eta = momentumCompaction - 1.0 / gamma ** 2 |
| 40 | +voltage = 12.0e6 |
40 | 41 | h = 35640 |
41 | | -p0=constants.m_p*betar*gamma*constants.c |
42 | | -Q_s=np.sqrt(constants.e*voltage*eta*h/(2*np.pi*betar*constants.c*p0)) |
| 42 | +p0 = constants.m_p * betar * gamma * constants.c |
| 43 | +Q_s = np.sqrt(constants.e * voltage * eta * h / (2 * np.pi * betar * constants.c * p0)) |
43 | 44 | circumference = 26658.883199999 |
44 | | -averageRadius = circumference/(2*np.pi) |
45 | | -sigma_delta = Q_s*sigma_z/(averageRadius*eta) |
46 | | -beta_s = sigma_z/sigma_delta |
47 | | -emit_s = 4*np.pi*sigma_z*sigma_delta*p0/constants.e # eVs for PyHEADTAIL |
| 45 | +averageRadius = circumference / (2 * np.pi) |
| 46 | +sigma_delta = Q_s * sigma_z / (averageRadius * eta) |
| 47 | +beta_s = sigma_z / sigma_delta |
| 48 | +emit_s = 4 * np.pi * sigma_z * sigma_delta * p0 / constants.e # eVs for PyHEADTAIL |
48 | 49 |
|
49 | 50 | n_slices_wakes = 200 |
50 | 51 | limit_z = 3 * sigma_z |
51 | | -wakefile = 'wakes/wakeforhdtl_PyZbase_Allthemachine_7000GeV_B1_2021_TeleIndex1_wake.dat' |
| 52 | +wakefile = "wakes/wakeforhdtl_PyZbase_Allthemachine_7000GeV_B1_2021_TeleIndex1_wake.dat" |
52 | 53 | slicer_for_wakefields = UniformBinSlicer(n_slices_wakes, z_cuts=(-limit_z, limit_z)) |
53 | | -waketable = WakeTable(wakefile, ['time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y']) |
| 54 | +waketable = WakeTable( |
| 55 | + wakefile, ["time", "dipole_x", "dipole_y", "quadrupole_x", "quadrupole_y"] |
| 56 | +) |
54 | 57 | wake_field = WakeField(slicer_for_wakefields, waketable) |
55 | 58 |
|
56 | | -damping_time = 100000000 #33. |
| 59 | +damping_time = 100000000 # 33. |
57 | 60 | damper = TransverseDamper(dampingrate_x=damping_time, dampingrate_y=damping_time) |
58 | 61 | i_oct = 0.0000001 |
59 | | -detx_x = 1.4E5*i_oct/550.0 # from PTC with ATS optics, telescopic factor 1.0 |
60 | | -detx_y = -1.0E5*i_oct/550.0 |
| 62 | +detx_x = 1.4e5 * i_oct / 550.0 # from PTC with ATS optics, telescopic factor 1.0 |
| 63 | +detx_y = -1.0e5 * i_oct / 550.0 |
61 | 64 |
|
62 | 65 | # expected octupole threshold with damper is 273A according to https://indico.cern.ch/event/902528/contributions/3798807/attachments/2010534/3359300/20200327_RunIII_stability_NMounet.pdf |
63 | 66 | # expected growth rate with damper but without octupole is ~0.3 [$10^{-4}$/turn] (also according to Nicolas' presentation) |
|
67 | 70 | ########### PyHEADTAIL part ############## |
68 | 71 |
|
69 | 72 | particles = generate_Gaussian6DTwiss( |
70 | | - macroparticlenumber = n_macroparticles, intensity = bunch_intensity, charge = constants.e, mass = constants.m_p, |
71 | | - circumference = circumference, gamma = gamma, |
72 | | - alpha_x = 0.0, alpha_y = 0.0, beta_x = beta_x, beta_y = beta_y, beta_z = beta_s, |
73 | | - epsn_x = normemit, epsn_y = normemit, epsn_z=emit_s) |
| 73 | + macroparticlenumber=n_macroparticles, |
| 74 | + intensity=bunch_intensity, |
| 75 | + charge=constants.e, |
| 76 | + mass=constants.m_p, |
| 77 | + circumference=circumference, |
| 78 | + gamma=gamma, |
| 79 | + alpha_x=0.0, |
| 80 | + alpha_y=0.0, |
| 81 | + beta_x=beta_x, |
| 82 | + beta_y=beta_y, |
| 83 | + beta_z=beta_s, |
| 84 | + epsn_x=normemit, |
| 85 | + epsn_y=normemit, |
| 86 | + epsn_z=emit_s, |
| 87 | +) |
74 | 88 |
|
75 | 89 | x0 = np.copy(particles.x) |
76 | 90 | px0 = np.copy(particles.xp) |
|
79 | 93 | zeta0 = np.copy(particles.z) |
80 | 94 | delta0 = np.copy(particles.dp) |
81 | 95 |
|
82 | | -print('PyHt size comp x',particles.sigma_x(),np.sqrt(normemit*beta_x/gamma/betar)) |
83 | | -print('PyHt size comp y',particles.sigma_y(),np.sqrt(normemit*beta_y/gamma/betar)) |
84 | | -print('PyHt size comp z',particles.sigma_z(),sigma_z) |
85 | | -print('PyHt size comp delta',particles.sigma_dp(),sigma_delta) |
| 96 | +print( |
| 97 | + "PyHt size comp x", particles.sigma_x(), np.sqrt(normemit * beta_x / gamma / betar) |
| 98 | +) |
| 99 | +print( |
| 100 | + "PyHt size comp y", particles.sigma_y(), np.sqrt(normemit * beta_y / gamma / betar) |
| 101 | +) |
| 102 | +print("PyHt size comp z", particles.sigma_z(), sigma_z) |
| 103 | +print("PyHt size comp delta", particles.sigma_dp(), sigma_delta) |
86 | 104 |
|
87 | | -chromatic_detuner = ChromaticitySegment(dQp_x = chroma,dQp_y = 0.0) |
88 | | -transverse_detuner = AmplitudeDetuningSegment(dapp_x=detx_x*p0, dapp_y=detx_x*p0, dapp_xy=detx_y*p0, dapp_yx=detx_y*p0, alpha_x=0.0, beta_x=beta_x, |
89 | | - alpha_y=0.0, beta_y=beta_y) |
| 105 | +chromatic_detuner = ChromaticitySegment(dQp_x=chroma, dQp_y=0.0) |
| 106 | +transverse_detuner = AmplitudeDetuningSegment( |
| 107 | + dapp_x=detx_x * p0, |
| 108 | + dapp_y=detx_x * p0, |
| 109 | + dapp_xy=detx_y * p0, |
| 110 | + dapp_yx=detx_y * p0, |
| 111 | + alpha_x=0.0, |
| 112 | + beta_x=beta_x, |
| 113 | + alpha_y=0.0, |
| 114 | + beta_y=beta_y, |
| 115 | +) |
90 | 116 | arc_transverse = TransverseSegmentMap( |
91 | | - alpha_x_s0 = 0.0, beta_x_s0 = beta_x, D_x_s0 = 0.0, alpha_x_s1 = 0.0, beta_x_s1 = beta_x, D_x_s1 = 0.0, |
92 | | - alpha_y_s0 = 0.0, beta_y_s0 = beta_y, D_y_s0 = 0.0, alpha_y_s1 = 0.0, beta_y_s1 = beta_y, D_y_s1 = 0.0, |
93 | | - dQ_x = Q_x, dQ_y = Q_y,segment_detuners=[chromatic_detuner,transverse_detuner]) |
94 | | -arc_longitudinal = LinearMap(alpha_array=[momentumCompaction], circumference=circumference, Q_s=Q_s) |
| 117 | + alpha_x_s0=0.0, |
| 118 | + beta_x_s0=beta_x, |
| 119 | + D_x_s0=0.0, |
| 120 | + alpha_x_s1=0.0, |
| 121 | + beta_x_s1=beta_x, |
| 122 | + D_x_s1=0.0, |
| 123 | + alpha_y_s0=0.0, |
| 124 | + beta_y_s0=beta_y, |
| 125 | + D_y_s0=0.0, |
| 126 | + alpha_y_s1=0.0, |
| 127 | + beta_y_s1=beta_y, |
| 128 | + D_y_s1=0.0, |
| 129 | + dQ_x=Q_x, |
| 130 | + dQ_y=Q_y, |
| 131 | + segment_detuners=[chromatic_detuner, transverse_detuner], |
| 132 | +) |
| 133 | +arc_longitudinal = LinearMap( |
| 134 | + alpha_array=[momentumCompaction], circumference=circumference, Q_s=Q_s |
| 135 | +) |
95 | 136 |
|
96 | 137 | turns = np.arange(nTurn) |
97 | | -x = np.zeros(nTurn,dtype=float) |
| 138 | +x = np.zeros(nTurn, dtype=float) |
98 | 139 | for turn in range(nTurn): |
99 | 140 | if turn == checkTurn: |
100 | 141 | x1 = np.copy(particles.x) |
|
113 | 154 | damper.track(particles) |
114 | 155 | time3 = time.time() |
115 | 156 | x[turn] = np.average(particles.x) |
116 | | - if turn%1000 == 0: |
117 | | - print(f'PyHt - turn {turn}: time for arc {time1-time0}s, for wake {time2-time1}s, for damper {time3-time2}s') |
118 | | -x /= np.sqrt(normemit*beta_x/gamma/betar) |
| 157 | + if turn % 1000 == 0: |
| 158 | + print( |
| 159 | + f"PyHt - turn {turn}: time for arc {time1-time0}s, for wake {time2-time1}s, for damper {time3-time2}s" |
| 160 | + ) |
| 161 | +x /= np.sqrt(normemit * beta_x / gamma / betar) |
119 | 162 | plt.figure(0) |
120 | | -plt.plot(turns,x,label=f'{i_oct}A') |
| 163 | +plt.plot(turns, x, label=f"{i_oct}A") |
121 | 164 | iMin = 1000 |
122 | | -iMax = nTurn-1000 |
| 165 | +iMax = nTurn - 1000 |
123 | 166 | if iMin >= iMax: |
124 | 167 | iMin = 0 |
125 | 168 | iMax = nTurn |
126 | 169 | ampl = np.abs(hilbert(x)) |
127 | | -b,a,r,p,stderr = linregress(turns[iMin:iMax],np.log(ampl[iMin:iMax])) |
128 | | -plt.plot(turns,np.exp(a+b*turns),'--k',label=f'{1/b:.3E} turns') |
129 | | -print(f'Growth rate {b*1E4} [$10^{-4}$/turn]') |
130 | | -plt.title('PyHEADTAIL') |
131 | | -plt.legend(loc='upper left') |
132 | | -plt.xlabel('Turn') |
133 | | -plt.ylabel('x [$\sigma_x$]') |
| 170 | +b, a, r, p, stderr = linregress(turns[iMin:iMax], np.log(ampl[iMin:iMax])) |
| 171 | +plt.plot(turns, np.exp(a + b * turns), "--k", label=f"{1/b:.3E} turns") |
| 172 | +print(f"Growth rate {b*1E4} [$10^{-4}$/turn]") |
| 173 | +plt.title("PyHEADTAIL") |
| 174 | +plt.legend(loc="upper left") |
| 175 | +plt.xlabel("Turn") |
| 176 | +plt.ylabel("x [$\sigma_x$]") |
134 | 177 |
|
135 | 178 | ############ xsuite-PyHEADTAIL part (the WakeField instance is shared) ######################## |
136 | 179 |
|
137 | | -if True: #Use the initial coordinates generated by PyHEADTAIL |
138 | | - particles = PyHtXtParticles(circumference=circumference,particlenumber_per_mp=bunch_intensity/n_macroparticles, |
139 | | - _context=context, |
140 | | - q0 = 1, |
141 | | - mass0 = protonMass, |
142 | | - gamma0 = gamma, |
143 | | - x=x0, |
144 | | - px=px0, |
145 | | - y=y0, |
146 | | - py=py0, |
147 | | - zeta=zeta0, |
148 | | - delta=delta0 |
149 | | - ) |
150 | | -else: #Use new random coordinates with the same distribution |
| 180 | +if True: # Use the initial coordinates generated by PyHEADTAIL |
| 181 | + particles = PyHtXtParticles( |
| 182 | + circumference=circumference, |
| 183 | + particlenumber_per_mp=bunch_intensity / n_macroparticles, |
| 184 | + _context=context, |
| 185 | + q0=1, |
| 186 | + mass0=protonMass, |
| 187 | + gamma0=gamma, |
| 188 | + x=x0, |
| 189 | + px=px0, |
| 190 | + y=y0, |
| 191 | + py=py0, |
| 192 | + zeta=zeta0, |
| 193 | + delta=delta0, |
| 194 | + ) |
| 195 | +else: # Use new random coordinates with the same distribution |
151 | 196 | checkTurn = -1 |
152 | | - particles = PyHtXtParticles(circumference=circumference,particlenumber_per_mp=bunch_intensity/n_macroparticles, |
153 | | - _context=context, |
154 | | - q0 = 1, |
155 | | - mass0 = protonMass, |
156 | | - gamma0 = gamma, |
157 | | - x=np.sqrt(normemit*beta_x/gamma/betar)*np.random.randn(n_macroparticles), |
158 | | - px=np.sqrt(normemit/beta_x/gamma/betar)*np.random.randn(n_macroparticles), |
159 | | - y=np.sqrt(normemit*beta_y/gamma/betar)*np.random.randn(n_macroparticles), |
160 | | - py=np.sqrt(normemit/beta_y/gamma/betar)*np.random.randn(n_macroparticles), |
161 | | - zeta=sigma_z*np.random.randn(n_macroparticles), |
162 | | - delta=sigma_delta*np.random.randn(n_macroparticles) |
163 | | - ) |
164 | | - |
165 | | -print('PyHtXt size comp x',particles.sigma_x(),np.sqrt(normemit*beta_x/gamma/betar)) |
166 | | -print('PyHtXt size comp y',particles.sigma_y(),np.sqrt(normemit*beta_y/gamma/betar)) |
167 | | -print('PyHtXt size comp z',particles.sigma_z(),sigma_z) |
168 | | -print('PyHtXt size comp delta',particles.sigma_dp(),sigma_delta) |
169 | | - |
170 | | -arc = xt.LinearTransferMatrix(_context=context, |
171 | | - alpha_x_0 = 0.0, beta_x_0 = beta_x, disp_x_0 = 0.0, |
172 | | - alpha_x_1 = 0.0, beta_x_1 = beta_x, disp_x_1 = 0.0, |
173 | | - alpha_y_0 = 0.0, beta_y_0 = beta_y, disp_y_0 = 0.0, |
174 | | - alpha_y_1 = 0.0, beta_y_1 = beta_y, disp_y_1 = 0.0, |
175 | | - Q_x = Q_x, Q_y = Q_y, |
176 | | - beta_s = beta_s, Q_s = -Q_s, |
177 | | - chroma_x = chroma,chroma_y = 0.0, |
178 | | - detx_x = detx_x,detx_y = detx_y,dety_y = detx_x, dety_x = detx_y, |
179 | | - energy_ref_increment=0.0,energy_increment=0) |
| 197 | + particles = PyHtXtParticles( |
| 198 | + circumference=circumference, |
| 199 | + particlenumber_per_mp=bunch_intensity / n_macroparticles, |
| 200 | + _context=context, |
| 201 | + q0=1, |
| 202 | + mass0=protonMass, |
| 203 | + gamma0=gamma, |
| 204 | + x=np.sqrt(normemit * beta_x / gamma / betar) |
| 205 | + * np.random.randn(n_macroparticles), |
| 206 | + px=np.sqrt(normemit / beta_x / gamma / betar) |
| 207 | + * np.random.randn(n_macroparticles), |
| 208 | + y=np.sqrt(normemit * beta_y / gamma / betar) |
| 209 | + * np.random.randn(n_macroparticles), |
| 210 | + py=np.sqrt(normemit / beta_y / gamma / betar) |
| 211 | + * np.random.randn(n_macroparticles), |
| 212 | + zeta=sigma_z * np.random.randn(n_macroparticles), |
| 213 | + delta=sigma_delta * np.random.randn(n_macroparticles), |
| 214 | + ) |
| 215 | + |
| 216 | +print( |
| 217 | + "PyHtXt size comp x", |
| 218 | + particles.sigma_x(), |
| 219 | + np.sqrt(normemit * beta_x / gamma / betar), |
| 220 | +) |
| 221 | +print( |
| 222 | + "PyHtXt size comp y", |
| 223 | + particles.sigma_y(), |
| 224 | + np.sqrt(normemit * beta_y / gamma / betar), |
| 225 | +) |
| 226 | +print("PyHtXt size comp z", particles.sigma_z(), sigma_z) |
| 227 | +print("PyHtXt size comp delta", particles.sigma_dp(), sigma_delta) |
| 228 | + |
| 229 | +arc = xt.LinearTransferMatrix( |
| 230 | + _context=context, |
| 231 | + alpha_x_0=0.0, |
| 232 | + beta_x_0=beta_x, |
| 233 | + disp_x_0=0.0, |
| 234 | + alpha_x_1=0.0, |
| 235 | + beta_x_1=beta_x, |
| 236 | + disp_x_1=0.0, |
| 237 | + alpha_y_0=0.0, |
| 238 | + beta_y_0=beta_y, |
| 239 | + disp_y_0=0.0, |
| 240 | + alpha_y_1=0.0, |
| 241 | + beta_y_1=beta_y, |
| 242 | + disp_y_1=0.0, |
| 243 | + Q_x=Q_x, |
| 244 | + Q_y=Q_y, |
| 245 | + beta_s=beta_s, |
| 246 | + Q_s=-Q_s, |
| 247 | + chroma_x=chroma, |
| 248 | + chroma_y=0.0, |
| 249 | + detx_x=detx_x, |
| 250 | + detx_y=detx_y, |
| 251 | + dety_y=detx_x, |
| 252 | + dety_x=detx_y, |
| 253 | + energy_ref_increment=0.0, |
| 254 | + energy_increment=0, |
| 255 | +) |
180 | 256 |
|
181 | 257 | turns = np.arange(nTurn) |
182 | | -x = np.zeros(nTurn,dtype=float) |
| 258 | +x = np.zeros(nTurn, dtype=float) |
183 | 259 | for turn in range(nTurn): |
184 | 260 | if turn == checkTurn: |
185 | | - print('x',particles.x-x1) |
186 | | - print('px',particles.px-px1) |
187 | | - print('y',particles.y-y1) |
188 | | - print('py',particles.py-py1) |
189 | | - print('z',particles.zeta-zeta1) |
190 | | - print('delta',particles.delta-delta1) |
| 261 | + print("x", particles.x - x1) |
| 262 | + print("px", particles.px - px1) |
| 263 | + print("y", particles.y - y1) |
| 264 | + print("py", particles.py - py1) |
| 265 | + print("z", particles.zeta - zeta1) |
| 266 | + print("delta", particles.delta - delta1) |
191 | 267 |
|
192 | 268 | time0 = time.time() |
193 | 269 | arc.track(particles) |
|
197 | 273 | damper.track(particles) |
198 | 274 | time3 = time.time() |
199 | 275 | x[turn] = np.average(particles.x) |
200 | | - if turn%1000 == 0: |
201 | | - print(f'PyHtXt - turn {turn}: time for arc {time1-time0}s, for wake {time2-time1}s, for damper {time3-time2}s') |
202 | | -x /= np.sqrt(normemit*beta_x/gamma/betar) |
| 276 | + if turn % 1000 == 0: |
| 277 | + print( |
| 278 | + f"PyHtXt - turn {turn}: time for arc {time1-time0}s, for wake {time2-time1}s, for damper {time3-time2}s" |
| 279 | + ) |
| 280 | +x /= np.sqrt(normemit * beta_x / gamma / betar) |
203 | 281 | plt.figure(1) |
204 | | -plt.plot(turns,x,label=f'{i_oct}A') |
| 282 | +plt.plot(turns, x, label=f"{i_oct}A") |
205 | 283 | iMin = 1000 |
206 | | -iMax = nTurn-1000 |
| 284 | +iMax = nTurn - 1000 |
207 | 285 | if iMin >= iMax: |
208 | 286 | iMin = 0 |
209 | 287 | iMax = nTurn |
210 | 288 | ampl = np.abs(hilbert(x)) |
211 | | -b,a,r,p,stderr = linregress(turns[iMin:iMax],np.log(ampl[iMin:iMax])) |
212 | | -plt.plot(turns,np.exp(a+b*turns),'--k',label=f'{1/b:.3E} turns') |
213 | | -print(f'Growth rate {b*1E4} [$10^{-4}$/turn]') |
214 | | -plt.title('xsuite-PyHEADTAIL') |
215 | | -plt.legend(loc='upper left') |
216 | | -plt.xlabel('Turn') |
217 | | -plt.ylabel('x [$\sigma_x$]') |
| 289 | +b, a, r, p, stderr = linregress(turns[iMin:iMax], np.log(ampl[iMin:iMax])) |
| 290 | +plt.plot(turns, np.exp(a + b * turns), "--k", label=f"{1/b:.3E} turns") |
| 291 | +print(f"Growth rate {b*1E4} [$10^{-4}$/turn]") |
| 292 | +plt.title("xsuite-PyHEADTAIL") |
| 293 | +plt.legend(loc="upper left") |
| 294 | +plt.xlabel("Turn") |
| 295 | +plt.ylabel("x [$\sigma_x$]") |
218 | 296 |
|
219 | 297 | plt.show() |
220 | | - |
|
0 commit comments