|
| 1 | +import pathlib |
| 2 | + |
| 3 | +def test_instability(): |
| 4 | + import time |
| 5 | + import numpy as np |
| 6 | + from scipy import constants |
| 7 | + |
| 8 | + protonMass = constants.value("proton mass energy equivalent in MeV") * 1e6 |
| 9 | + from scipy.stats import linregress |
| 10 | + from scipy.signal import hilbert |
| 11 | + |
| 12 | + import xobjects as xo |
| 13 | + import xtrack as xt |
| 14 | + from xtrack.pyheadtail_interface.pyhtxtparticles import PyHtXtParticles |
| 15 | + |
| 16 | + from PyHEADTAIL.particles.generators import generate_Gaussian6DTwiss |
| 17 | + from PyHEADTAIL.particles.slicing import UniformBinSlicer |
| 18 | + from PyHEADTAIL.impedances.wakes import WakeTable, WakeField |
| 19 | + from PyHEADTAIL.feedback.transverse_damper import TransverseDamper |
| 20 | + from PyHEADTAIL.trackers.transverse_tracking import TransverseSegmentMap |
| 21 | + from PyHEADTAIL.trackers.longitudinal_tracking import LinearMap |
| 22 | + from PyHEADTAIL.trackers.detuners import ChromaticitySegment, AmplitudeDetuningSegment |
| 23 | + |
| 24 | + context = xo.ContextCpu(omp_num_threads=1) |
| 25 | + |
| 26 | + nTurn = 5000 # int(1E4) |
| 27 | + bunch_intensity = 1.8e11 |
| 28 | + n_macroparticles = int(1e4) |
| 29 | + energy = 7e3 # [GeV] |
| 30 | + gamma = energy * 1e9 / protonMass |
| 31 | + betar = np.sqrt(1 - 1 / gamma ** 2) |
| 32 | + normemit = 1.8e-6 |
| 33 | + beta_x = 68.9 |
| 34 | + beta_y = 70.34 |
| 35 | + Q_x = 0.31 |
| 36 | + Q_y = 0.32 |
| 37 | + chroma = -5.0 # 10.0 |
| 38 | + sigma_4t = 1.2e-9 |
| 39 | + sigma_z = sigma_4t / 4.0 * constants.c |
| 40 | + momentumCompaction = 3.483575072011584e-04 |
| 41 | + eta = momentumCompaction - 1.0 / gamma ** 2 |
| 42 | + voltage = 12.0e6 |
| 43 | + h = 35640 |
| 44 | + p0 = constants.m_p * betar * gamma * constants.c |
| 45 | + Q_s = np.sqrt(constants.e * voltage * eta * h / (2 * np.pi * betar * constants.c * p0)) |
| 46 | + circumference = 26658.883199999 |
| 47 | + averageRadius = circumference / (2 * np.pi) |
| 48 | + sigma_delta = Q_s * sigma_z / (averageRadius * eta) |
| 49 | + beta_s = sigma_z / sigma_delta |
| 50 | + emit_s = 4 * np.pi * sigma_z * sigma_delta * p0 / constants.e # eVs for PyHEADTAIL |
| 51 | + |
| 52 | + n_slices_wakes = 200 |
| 53 | + limit_z = 3 * sigma_z |
| 54 | + |
| 55 | + wake_folder = pathlib.Path( |
| 56 | + __file__).parent.joinpath('../examples/pyheadtail_interface/wakes').absolute() |
| 57 | + wakefile = wake_folder.joinpath( |
| 58 | + "wakeforhdtl_PyZbase_Allthemachine_7000GeV_B1_2021_TeleIndex1_wake.dat") |
| 59 | + slicer_for_wakefields = UniformBinSlicer(n_slices_wakes, z_cuts=(-limit_z, limit_z)) |
| 60 | + waketable = WakeTable( |
| 61 | + wakefile, ["time", "dipole_x", "dipole_y", "quadrupole_x", "quadrupole_y"] |
| 62 | + ) |
| 63 | + wake_field = WakeField(slicer_for_wakefields, waketable) |
| 64 | + |
| 65 | + damping_time = 7000 # 33. |
| 66 | + damper = TransverseDamper(dampingrate_x=damping_time, dampingrate_y=damping_time) |
| 67 | + i_oct = 15. |
| 68 | + detx_x = 1.4e5 * i_oct / 550.0 # from PTC with ATS optics, telescopic factor 1.0 |
| 69 | + detx_y = -1.0e5 * i_oct / 550.0 |
| 70 | + |
| 71 | + checkTurn = 1000 |
| 72 | + |
| 73 | + ########### PyHEADTAIL part ############## |
| 74 | + |
| 75 | + particles = generate_Gaussian6DTwiss( |
| 76 | + macroparticlenumber=n_macroparticles, |
| 77 | + intensity=bunch_intensity, |
| 78 | + charge=constants.e, |
| 79 | + mass=constants.m_p, |
| 80 | + circumference=circumference, |
| 81 | + gamma=gamma, |
| 82 | + alpha_x=0.0, |
| 83 | + alpha_y=0.0, |
| 84 | + beta_x=beta_x, |
| 85 | + beta_y=beta_y, |
| 86 | + beta_z=beta_s, |
| 87 | + epsn_x=normemit, |
| 88 | + epsn_y=normemit, |
| 89 | + epsn_z=emit_s, |
| 90 | + ) |
| 91 | + |
| 92 | + x0 = np.copy(particles.x) |
| 93 | + px0 = np.copy(particles.xp) |
| 94 | + y0 = np.copy(particles.y) |
| 95 | + py0 = np.copy(particles.yp) |
| 96 | + zeta0 = np.copy(particles.z) |
| 97 | + delta0 = np.copy(particles.dp) |
| 98 | + |
| 99 | + print( |
| 100 | + "PyHt size comp x", particles.sigma_x(), np.sqrt(normemit * beta_x / gamma / betar) |
| 101 | + ) |
| 102 | + print( |
| 103 | + "PyHt size comp y", particles.sigma_y(), np.sqrt(normemit * beta_y / gamma / betar) |
| 104 | + ) |
| 105 | + print("PyHt size comp z", particles.sigma_z(), sigma_z) |
| 106 | + print("PyHt size comp delta", particles.sigma_dp(), sigma_delta) |
| 107 | + |
| 108 | + chromatic_detuner = ChromaticitySegment(dQp_x=chroma, dQp_y=0.0) |
| 109 | + transverse_detuner = AmplitudeDetuningSegment( |
| 110 | + dapp_x=detx_x * p0, |
| 111 | + dapp_y=detx_x * p0, |
| 112 | + dapp_xy=detx_y * p0, |
| 113 | + dapp_yx=detx_y * p0, |
| 114 | + alpha_x=0.0, |
| 115 | + beta_x=beta_x, |
| 116 | + alpha_y=0.0, |
| 117 | + beta_y=beta_y, |
| 118 | + ) |
| 119 | + arc_transverse = TransverseSegmentMap( |
| 120 | + alpha_x_s0=0.0, |
| 121 | + beta_x_s0=beta_x, |
| 122 | + D_x_s0=0.0, |
| 123 | + alpha_x_s1=0.0, |
| 124 | + beta_x_s1=beta_x, |
| 125 | + D_x_s1=0.0, |
| 126 | + alpha_y_s0=0.0, |
| 127 | + beta_y_s0=beta_y, |
| 128 | + D_y_s0=0.0, |
| 129 | + alpha_y_s1=0.0, |
| 130 | + beta_y_s1=beta_y, |
| 131 | + D_y_s1=0.0, |
| 132 | + dQ_x=Q_x, |
| 133 | + dQ_y=Q_y, |
| 134 | + segment_detuners=[chromatic_detuner, transverse_detuner], |
| 135 | + ) |
| 136 | + arc_longitudinal = LinearMap( |
| 137 | + alpha_array=[momentumCompaction], circumference=circumference, Q_s=Q_s |
| 138 | + ) |
| 139 | + |
| 140 | + turns = np.arange(nTurn) |
| 141 | + x = np.zeros(nTurn, dtype=float) |
| 142 | + for turn in range(nTurn): |
| 143 | + if turn == checkTurn: |
| 144 | + x1 = np.copy(particles.x) |
| 145 | + px1 = np.copy(particles.xp) |
| 146 | + y1 = np.copy(particles.y) |
| 147 | + py1 = np.copy(particles.yp) |
| 148 | + zeta1 = np.copy(particles.z) |
| 149 | + delta1 = np.copy(particles.dp) |
| 150 | + |
| 151 | + time0 = time.time() |
| 152 | + arc_transverse.track(particles) |
| 153 | + arc_longitudinal.track(particles) |
| 154 | + time1 = time.time() |
| 155 | + wake_field.track(particles) |
| 156 | + time2 = time.time() |
| 157 | + damper.track(particles) |
| 158 | + time3 = time.time() |
| 159 | + x[turn] = np.average(particles.x) |
| 160 | + if turn % 1000 == 0: |
| 161 | + print( |
| 162 | + f"PyHt - turn {turn}: time for arc {time1-time0}s, for wake {time2-time1}s, for damper {time3-time2}s" |
| 163 | + ) |
| 164 | + x /= np.sqrt(normemit * beta_x / gamma / betar) |
| 165 | + iMin = 1000 |
| 166 | + iMax = nTurn - 1000 |
| 167 | + if iMin >= iMax: |
| 168 | + iMin = 0 |
| 169 | + iMax = nTurn |
| 170 | + ampl = np.abs(hilbert(x)) |
| 171 | + b, a, r, p, stderr = linregress(turns[iMin:iMax], np.log(ampl[iMin:iMax])) |
| 172 | + gr_pyht = b |
| 173 | + print(f"Growth rate {b*1E4} [$10^{-4}$/turn]") |
| 174 | + |
| 175 | + ############ xsuite-PyHEADTAIL part (the WakeField instance is shared) ######################## |
| 176 | + |
| 177 | + if True: # Use the initial coordinates generated by PyHEADTAIL |
| 178 | + particles = PyHtXtParticles( |
| 179 | + circumference=circumference, |
| 180 | + particlenumber_per_mp=bunch_intensity / n_macroparticles, |
| 181 | + _context=context, |
| 182 | + q0=1, |
| 183 | + mass0=protonMass, |
| 184 | + gamma0=gamma, |
| 185 | + x=x0, |
| 186 | + px=px0, |
| 187 | + y=y0, |
| 188 | + py=py0, |
| 189 | + zeta=zeta0, |
| 190 | + delta=delta0, |
| 191 | + ) |
| 192 | + else: # Use new random coordinates with the same distribution |
| 193 | + checkTurn = -1 |
| 194 | + particles = PyHtXtParticles( |
| 195 | + circumference=circumference, |
| 196 | + particlenumber_per_mp=bunch_intensity / n_macroparticles, |
| 197 | + _context=context, |
| 198 | + q0=1, |
| 199 | + mass0=protonMass, |
| 200 | + gamma0=gamma, |
| 201 | + x=np.sqrt(normemit * beta_x / gamma / betar) |
| 202 | + * np.random.randn(n_macroparticles), |
| 203 | + px=np.sqrt(normemit / beta_x / gamma / betar) |
| 204 | + * np.random.randn(n_macroparticles), |
| 205 | + y=np.sqrt(normemit * beta_y / gamma / betar) |
| 206 | + * np.random.randn(n_macroparticles), |
| 207 | + py=np.sqrt(normemit / beta_y / gamma / betar) |
| 208 | + * np.random.randn(n_macroparticles), |
| 209 | + zeta=sigma_z * np.random.randn(n_macroparticles), |
| 210 | + delta=sigma_delta * np.random.randn(n_macroparticles), |
| 211 | + ) |
| 212 | + |
| 213 | + print( |
| 214 | + "PyHtXt size comp x", |
| 215 | + particles.sigma_x(), |
| 216 | + np.sqrt(normemit * beta_x / gamma / betar), |
| 217 | + ) |
| 218 | + print( |
| 219 | + "PyHtXt size comp y", |
| 220 | + particles.sigma_y(), |
| 221 | + np.sqrt(normemit * beta_y / gamma / betar), |
| 222 | + ) |
| 223 | + print("PyHtXt size comp z", particles.sigma_z(), sigma_z) |
| 224 | + print("PyHtXt size comp delta", particles.sigma_dp(), sigma_delta) |
| 225 | + |
| 226 | + arc = xt.LinearTransferMatrix( |
| 227 | + _context=context, |
| 228 | + alpha_x_0=0.0, |
| 229 | + beta_x_0=beta_x, |
| 230 | + disp_x_0=0.0, |
| 231 | + alpha_x_1=0.0, |
| 232 | + beta_x_1=beta_x, |
| 233 | + disp_x_1=0.0, |
| 234 | + alpha_y_0=0.0, |
| 235 | + beta_y_0=beta_y, |
| 236 | + disp_y_0=0.0, |
| 237 | + alpha_y_1=0.0, |
| 238 | + beta_y_1=beta_y, |
| 239 | + disp_y_1=0.0, |
| 240 | + Q_x=Q_x, |
| 241 | + Q_y=Q_y, |
| 242 | + beta_s=beta_s, |
| 243 | + Q_s=-Q_s, |
| 244 | + chroma_x=chroma, |
| 245 | + chroma_y=0.0, |
| 246 | + detx_x=detx_x, |
| 247 | + detx_y=detx_y, |
| 248 | + dety_y=detx_x, |
| 249 | + dety_x=detx_y, |
| 250 | + energy_ref_increment=0.0, |
| 251 | + energy_increment=0, |
| 252 | + ) |
| 253 | + |
| 254 | + turns = np.arange(nTurn) |
| 255 | + x = np.zeros(nTurn, dtype=float) |
| 256 | + for turn in range(nTurn): |
| 257 | + if turn == checkTurn: |
| 258 | + print("x", particles.x - x1) |
| 259 | + print("px", particles.px - px1) |
| 260 | + print("y", particles.y - y1) |
| 261 | + print("py", particles.py - py1) |
| 262 | + print("z", particles.zeta - zeta1) |
| 263 | + print("delta", particles.delta - delta1) |
| 264 | + |
| 265 | + time0 = time.time() |
| 266 | + arc.track(particles) |
| 267 | + time1 = time.time() |
| 268 | + wake_field.track(particles) |
| 269 | + time2 = time.time() |
| 270 | + damper.track(particles) |
| 271 | + time3 = time.time() |
| 272 | + x[turn] = np.average(particles.x) |
| 273 | + if turn % 1000 == 0: |
| 274 | + print( |
| 275 | + f"PyHtXt - turn {turn}: time for arc {time1-time0}s, for wake {time2-time1}s, for damper {time3-time2}s" |
| 276 | + ) |
| 277 | + x /= np.sqrt(normemit * beta_x / gamma / betar) |
| 278 | + iMin = 1000 |
| 279 | + iMax = nTurn - 1000 |
| 280 | + if iMin >= iMax: |
| 281 | + iMin = 0 |
| 282 | + iMax = nTurn |
| 283 | + ampl = np.abs(hilbert(x)) |
| 284 | + b, a, r, p, stderr = linregress(turns[iMin:iMax], np.log(ampl[iMin:iMax])) |
| 285 | + gr_xtpyht = b |
| 286 | + print(f"Growth rate {b*1E4} [$10^{-4}$/turn]") |
| 287 | + |
| 288 | + assert np.isclose(gr_xtpyht, gr_pyht, rtol=1e-3, atol=1e-100) |
| 289 | + |
0 commit comments