-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_grade.py
498 lines (386 loc) · 21.4 KB
/
model_grade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Grade an evaluated model based on its data set
# Make sure to run actions on morph output first to generate tag input
# Workflow:
# python3 model_new.py morph small_500actions_400len_ver2 --batch-size=64
# python3 model_new.py morph small_500actions_400len_ver2 --batch-size=64 --evaluate
# python3 model_new.py tag small_500actions_400len_ver2 --batch-size=64
# python3 run_actions.py small_500actions_400len_ver2_morph_bilstm_cudnn_dynamic_ES300_CH300_DK70_SEQ400_B64_EP100/output/eval_test.out small_500actions_400len_ver2_morph_bilstm_cudnn_dynamic_ES300_CH300_DK70_SEQ400_B64_EP100/output/eval_test.taginput
# python3 model_new.py tag small_500actions_400len_ver2 --batch-size=64 --evaluate --eval-inference-file small_500actions_400len_ver2_morph_bilstm_cudnn_dynamic_ES300_CH300_DK70_SEQ400_B64_EP100/output/eval_test.taginput
# python3 model_grade.py small_500actions_400len_ver2 small_500actions_400len_ver2_morph_bilstm_cudnn_dynamic_ES300_CH300_DK70_SEQ400_B64_EP100/output/eval_test.out small_500actions_400len_ver2_tag_bilstm_cudnn_dynamic_ES300_CH300_DK70_SEQ400_B64_EP100/output/inference.out
import sys
import argparse
from bio_tools import *
from logging import handlers
parser = argparse.ArgumentParser(description='Grade two-stage morphing/tagging model in an end-to-end fashion.')
# forced to be morph or tag for now
#parser.add_argument('model_type', type=str,
# help='morph or tag')
parser.add_argument('model_data_dir', type=str,
help='Data directory containing test data (data/model_data_dir/model_type_{train,dev,test}.txt')
parser.add_argument('morph_eval', type=str, default=None,
help='Path to load morph eval file from (inference of testing set)')
parser.add_argument('tag_eval', type=str, default=None,
help='Path to load tag eval file from (inference of morph stage output)')
args = parser.parse_args()
if args.model_data_dir.endswith('/'):
args.model_data_dir = args.model_data_dir[:-1]
logging.basicConfig(
format='%(asctime)s : %(levelname)s : [%(name)s] : %(message)s',
level=logging.INFO,
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger('Grade')
logger.info('Morph gold input: data/%s/%s_test.txt' % (args.model_data_dir, 'morph'))
logger.info('Morph inference input: %s' % args.morph_eval)
logger.info('Tag gold input: data/%s/%s_test.txt' % (args.model_data_dir, 'tag'))
logger.info('Tag inference input: %s' % args.tag_eval)
morph_gold = BIODataInput('data/%s/%s_test.txt' % (args.model_data_dir, 'morph'))
morph_eval = BIODataInput(args.morph_eval)
tag_gold = BIODataInput('data/%s/%s_test.txt' % (args.model_data_dir, 'tag'))
tag_eval = BIODataInput(args.tag_eval)
# length checking
assert len(morph_gold.sentences) == len(morph_eval.sentences)
assert len(tag_gold.sentences) == len(tag_eval.sentences)
assert len(morph_eval.sentences) == len(tag_eval.sentences)
sentence_count = len(morph_gold.sentences)
logger.info('Length check passed (%d sentences detected)' % (sentence_count))
logger.info('Finding word-level OOV tokens by comparing training set and testing set lexicon...')
'''
# proof of word-level OOV finder... "휩싸였다."
andy@andy-home:/mnt/deeplearn/newunitag$ grep -C3 휩 data/small_500actions_400len_ver2/morph_train.txt|grep -C3 싸
andy@andy-home:/mnt/deeplearn/newunitag$ grep -C3 휩 data/small_500actions_400len_ver2/morph_test.txt|grep -C3 싸
에 B-KEEP
_ B-KEEP
휩 B-KEEP
싸 I-KEEP
였 MOD:['I-이','B-었']
다 B-KEEP
# proof of word-level OOV finder... "쇄신하고자"
andy@andy-home:/mnt/deeplearn/newunitag$ grep -C5 쇄 data/small_500actions_400len_ver2/morph_train.txt|grep -C5 신|grep -C5 고|grep -C5 자
andy@andy-home:/mnt/deeplearn/newunitag$ grep -C5 쇄 data/small_500actions_400len_ver2/morph_test.txt|grep -C5 신|grep -C5 고|grep -C5 자
_ B-KEEP
쇄 B-KEEP
신 I-KEEP
하 B-KEEP
고 B-KEEP
자 I-KEEP
_ B-KEEP
'''
'''
force_segmod_keep: force all space-separated segments to be B,I,I,I... and KEEP actions
this includes force_mod_keep automatically
force_mod_keep: force all MODs or NOOPs to become KEEP actions
'''
def as_word_level(chunks, force_segmod_keep=False, force_mod_keep=False):
if force_segmod_keep:
assert not force_mod_keep, 'mutually exclusive options: force_segmod_keep already does force_mod_keep'
words = []
current_word = []
for c_idx, c in enumerate(sorted(chunks)): # make sure to traverse in order
if c[1].rsplit('/', 1)[0] == '_': # '_' is reserved
if len(current_word) > 0:
words.append(current_word)
current_word = []
else:
if force_segmod_keep:
morph, tag = c[1].rsplit('/', 1)
if len(current_word) == 0:
current_word.append((len(current_word), '/'.join((morph, 'B-KEEP'))))
else:
current_word.append((len(current_word), '/'.join((morph, 'I-KEEP'))))
elif force_mod_keep:
morph, tag = c[1].rsplit('/', 1)
if tag == 'NOOP':
if len(current_word) == 0:
# if it was a NOOP action, make it a KEEP depending
# on where we are in the word
tag = 'B-KEEP'
else:
tag = 'I-KEEP'
elif tag == 'B-KEEP' or tag == 'I-KEEP':
# no change
pass
else:
# mod action that could contain multiple B/I
# in our case, just force depending on word position
if len(current_word) == 0:
# if it was a NOOP action, make it a KEEP depending
# on where we are in the word
tag = 'B-KEEP'
else:
tag = 'I-KEEP'
current_word.append((len(current_word), '/'.join((morph, tag))))
else:
current_word.append((len(current_word), c[1]))
if len(current_word) > 0:
words.append(current_word)
return words
'''
Get concatenated morph from word chunk
(results in original input word)
[(0, '(/B-KEEP'), (1, '6/B-KEEP'), (2, ')/B-KEEP')]
to
'(6)'
'''
def morph_only_fromword(l):
m_out = ''
for elem in sorted(l):
morph, tag = elem[1].rsplit('/', 1)
m_out += morph
return m_out
# wordlevel_oov_tokens
# (words encountered at the morph stage in the test set that are not
# present in the training set)
# requires opening up the gold training corpus
wordlevel_oov_token_set = set()
morph_gold_train = BIODataInput('data/%s/%s_train.txt' % (args.model_data_dir, 'morph'))
wordlevel_train_token_set = set()
wordlevel_test_token_set = set()
# determine train set word lexicon
for i in range(len(morph_gold_train.sentences)):
m_gold_train = morph_gold_train.sentences[i]
m_gold_train_chunks = m_gold_train.get_input_and_label_chunks()
m_gold_train_chunks_wordlevel = as_word_level(m_gold_train_chunks)
for w_chunk in sorted(m_gold_train_chunks_wordlevel):
wordlevel_train_token_set.add(morph_only_fromword(w_chunk))
# determine test set word lexicon
for i in range(len(morph_gold.sentences)):
m_gold = morph_gold.sentences[i]
m_gold_chunks = m_gold.get_input_and_label_chunks()
m_gold_chunks_wordlevel = as_word_level(m_gold_chunks)
for w_chunk in sorted(m_gold_chunks_wordlevel):
wordlevel_test_token_set.add(morph_only_fromword(w_chunk))
wordlevel_oov_token_set = (wordlevel_train_token_set|wordlevel_test_token_set) - wordlevel_train_token_set
logger.info('%d OOV word-level tokens identified' % len(wordlevel_oov_token_set))
# correct sentence-level morph chunks (sentence-level includes proper detection of space tokens)
all_correct_m_chunks = 0
all_total_m_chunks = 0
# correct sentence-level end-to-end chunks (sentence-level includes proper detection of space tokens)
all_correct_e2e_chunks = 0
all_total_e2e_chunks = 0
# correct word-level morph chunks
all_correct_m_chunks_wordlevel = 0
all_total_m_chunks_wordlevel = 0
# correct oov word-level morph chunks
all_correct_m_chunks_wordlevel_oov = 0
all_total_m_chunks_wordlevel_oov = 0
# correct word-level morph chunks (null segment and mod actions)
all_correct_m_chunks_wordlevel_null_segmod = 0
all_total_m_chunks_wordlevel_null_segmod = 0
# correct word-level morph chunks (null mod actions)
all_correct_m_chunks_wordlevel_null_mod = 0
all_total_m_chunks_wordlevel_null_mod = 0
# correct word-level end-to-end chunks (Eojeol level end-to-end accuracy)
all_correct_e2e_chunks_wordlevel = 0
all_total_e2e_chunks_wordlevel = 0
# correct word-level end-to-end chunks among OOV words
all_correct_e2e_chunks_wordlevel_oov = 0
all_total_e2e_chunks_wordlevel_oov = 0
# correct words (probably best metric: atomic, incremented if all morphemes in an entire word is correct end-to-end)
all_correct_words = 0
all_total_words = 0
# correct OOV words
all_correct_words_oov = 0
all_total_words_oov = 0
# correct sentences (atomic, incremented if all words in a sentence are correct end-to-end)
all_correct_sentences = 0
all_total_sentences = 0
#def convert_to_space_level_chunk_array(m_g_chunks, m_e_chunks, t_g_chunks, t_e_chunks):
'''
Given input, generate all null keep actions
Make all actions separated by _ to be B,I..
'''
'''def to_null_keep_action_chunks(gold_chunks):
null_chunks = []
## gold_chunks : {(64, "였/MOD:['B-이','B-었']"), (7, '_/B-KEEP'),}...
## null_chunks : {(64, "였/MOD:B-KEEP"), (7, '_/B-KEEP'),}...
for elem in sorted(gold_chunks):
if
print(gold_chunks)
return null_chunks'''
for i in range(sentence_count):
m_gold = morph_gold.sentences[i]
m_gold_chunks = m_gold.get_input_and_label_chunks()
m_eval = morph_eval.sentences[i]
m_eval_chunks = m_eval.get_input_and_label_chunks()
#m_eval_chunks_keep = to_null_keep_action_chunks(m_gold_chunks)
#break
assert len(m_gold.labels) == len(m_eval.labels)
t_gold = tag_gold.sentences[i]
t_gold_chunks = t_gold.get_input_and_label_chunks()
t_eval = tag_eval.sentences[i]
t_eval_chunks = t_eval.get_input_and_label_chunks()
# tags might be different length depending on morphing actions taken!
# that's what makes grading more difficult
# assert len(t_gold.labels) == len(t_eval.labels)
# check the gold tag label chunks against the eval tag label chunks
# (index, tagged_output)
# get end-to-end-chunks
#t_eval_chunks
#print(t_eval_chunks)
# it's better to split them up by word first.
# otherwise we're doing sentence-level chunk accuracy
# and one wrong word propagates
m_gold_chunks_wordlevel = as_word_level(m_gold_chunks)
m_eval_chunks_wordlevel = as_word_level(m_eval_chunks)
# assume that segmentation and transformation actions are null
m_eval_chunks_wordlevel_null_segmod = as_word_level(m_eval_chunks, force_segmod_keep=True)
# assume that segmentation actions are as good as original predicts but that
# transformation actions are null (all KEEP)
m_eval_chunks_wordlevel_null_mod = as_word_level(m_eval_chunks, force_mod_keep=True)
t_gold_chunks_wordlevel = as_word_level(t_gold_chunks)
t_eval_chunks_wordlevel = as_word_level(t_eval_chunks)
#print('m_gold_chunks_wordlevel', sorted(m_gold_chunks_wordlevel))
#print('m_eval_chunks_wordlevel_null_segmod', sorted(m_eval_chunks_wordlevel_null_segmod))
#break
## TODO: make sure this doesn't error for any other reason
try:
# just an character-level action-based tag, so should be equal length at
# morphing stage
assert len(m_gold_chunks_wordlevel) == len(m_eval_chunks_wordlevel), 'sentence ' + str(i) + ' : ' + str(m_gold_chunks_wordlevel) + ' VS ' + str(m_eval_chunks_wordlevel)
# at tagging stage, unit count may differ and spaces may get deleted somehow
except:
# this can fail if special token _ is used. just remove off our grade for now; it's such an edge case.
'''
AssertionError: sentence 39982 :
[[(0, '왜/B-KEEP')], [(0, '그/B-KEEP'), (1, "_/MOD:['B-/','I-S','I-S','I-X','B-_']"), (2, '모/B-KEEP'), (3, '르/I-KEEP'), (4, '잖/B-KEEP'), (5, '아/I-KEEP'), (6, '요/I-KEEP'), (7, './B-KEEP')]]
[[(0, '왜/B-KEEP')], [(0, '그/B-KEEP')], [(0, '모/B-KEEP'), (1, '르/I-KEEP'), (2, '잖/B-KEEP'), (3, '아/I-KEEP'), (4, '요/I-KEEP'), (5, './B-KEEP')]]
'''
pass
# evaluate based on NULL segmod morph word-level chunk accuracy (look at each word)
for w_idx in range(len(m_gold_chunks_wordlevel)):
# compare inner word chunks
gold_chunks_inside_word = set(m_gold_chunks_wordlevel[w_idx])
eval_chunks_inside_word = set(m_eval_chunks_wordlevel_null_segmod[w_idx])
#print(sorted(gold_chunks_inside_word))
#print(sorted(eval_chunks_inside_word))
# handle above assert case properly
if len(m_eval_chunks_wordlevel_null_segmod) > w_idx:
eval_chunks_inside_word = set(m_eval_chunks_wordlevel_null_segmod[w_idx])
else:
eval_chunks_inside_word = set() # take everything as wrong after a certain point, if word spacing got screwed up
correct_chunks_inside_word = gold_chunks_inside_word & eval_chunks_inside_word
all_correct_m_chunks_wordlevel_null_segmod += len(correct_chunks_inside_word)
all_total_m_chunks_wordlevel_null_segmod += len(gold_chunks_inside_word)
# evaluate based on NULL mod morph word-level chunk accuracy (look at each word)
for w_idx in range(len(m_gold_chunks_wordlevel)):
# compare inner word chunks
gold_chunks_inside_word = set(m_gold_chunks_wordlevel[w_idx])
eval_chunks_inside_word = set(m_eval_chunks_wordlevel_null_mod[w_idx])
#print(sorted(gold_chunks_inside_word))
#print(sorted(eval_chunks_inside_word))
# handle above assert case properly
if len(m_eval_chunks_wordlevel_null_mod) > w_idx:
eval_chunks_inside_word = set(m_eval_chunks_wordlevel_null_mod[w_idx])
else:
eval_chunks_inside_word = set() # take everything as wrong after a certain point, if word spacing got screwed up
correct_chunks_inside_word = gold_chunks_inside_word & eval_chunks_inside_word
all_correct_m_chunks_wordlevel_null_mod += len(correct_chunks_inside_word)
all_total_m_chunks_wordlevel_null_mod += len(gold_chunks_inside_word)
# evaluate based on morph word-level chunk accuracy (look at each word)
for w_idx in range(len(m_gold_chunks_wordlevel)):
is_oov_word = (morph_only_fromword(m_gold_chunks_wordlevel[w_idx]) in wordlevel_oov_token_set)
# compare inner word chunks
gold_chunks_inside_word = set(m_gold_chunks_wordlevel[w_idx])
eval_chunks_inside_word = set(m_eval_chunks_wordlevel[w_idx])
# handle above assert case properly
if len(m_eval_chunks_wordlevel) > w_idx:
eval_chunks_inside_word = set(m_eval_chunks_wordlevel[w_idx])
else:
eval_chunks_inside_word = set() # take everything as wrong after a certain point, if word spacing got screwed up
correct_chunks_inside_word = gold_chunks_inside_word & eval_chunks_inside_word
all_correct_m_chunks_wordlevel += len(correct_chunks_inside_word)
all_total_m_chunks_wordlevel += len(gold_chunks_inside_word)
# increment the OOV metric if applicable as well
if is_oov_word:
all_correct_m_chunks_wordlevel_oov += len(correct_chunks_inside_word)
all_total_m_chunks_wordlevel_oov += len(gold_chunks_inside_word)
sentence_is_correct = True
# evaluate based on tag word-level chunk accuracy (look at each word)
for w_idx in range(len(t_gold_chunks_wordlevel)):
is_oov_word = (morph_only_fromword(m_gold_chunks_wordlevel[w_idx]) in wordlevel_oov_token_set)
# print(m_gold_chunks_wordlevel[w_idx], t_gold_chunks_wordlevel[w_idx])
# is_oov_word needs to check MORPH input. combined input may not be same
'''
MORPH: 이러한
TAG: 이러하ㄴ
'''
# compare inner word chunks
gold_chunks_inside_word = set(t_gold_chunks_wordlevel[w_idx])
if len(t_eval_chunks_wordlevel) > w_idx:
eval_chunks_inside_word = set(t_eval_chunks_wordlevel[w_idx])
else:
eval_chunks_inside_word = set() # take everything as wrong after a certain point, if word spacing got screwed up
correct_chunks_inside_word = gold_chunks_inside_word & eval_chunks_inside_word
if len(correct_chunks_inside_word) != len(gold_chunks_inside_word):
sentence_is_correct = False
else:
all_correct_words += 1
if is_oov_word:
all_correct_words_oov += 1
all_total_words += 1
if is_oov_word:
all_total_words_oov += 1
all_correct_e2e_chunks_wordlevel += len(correct_chunks_inside_word)
all_total_e2e_chunks_wordlevel += len(gold_chunks_inside_word)
# increment the OOV metric if applicable as well
if is_oov_word:
all_correct_e2e_chunks_wordlevel_oov += len(correct_chunks_inside_word)
all_total_e2e_chunks_wordlevel_oov += len(gold_chunks_inside_word)
correct_m_chunks = m_gold_chunks & m_eval_chunks
total_m_chunks = len(m_gold_chunks)
all_correct_m_chunks += len(correct_m_chunks)
all_total_m_chunks += total_m_chunks
correct_e2e_chunks = t_gold_chunks & t_eval_chunks
total_e2e_chunks = len(t_gold_chunks)
if len(correct_e2e_chunks) < total_e2e_chunks:
#print('Gold', sorted(t_gold_chunks))
#print('Eval', sorted(t_eval_chunks))
#print('Invalid:', sorted(t_gold_chunks - t_eval_chunks))
## FIXME: possible that mode2 input has OOV created by mode0
# in that case mode2 chunk might be something weird? or not in new one ?
# because a deepcopy is done of gold and then only labels are changed
# in predict function, even if the OOV unit isn't in the tag stage's
# word2index (lexicon) it doesn't get changed.
'''
# take whatever was from mode0out
print('OOV', pred[g_i], '==>', (mode0out[g_i][0], pred[g_i][1]))
pred[g_i] = (mode0out[g_i][0], pred[g_i][1])
'''
all_correct_e2e_chunks += len(correct_e2e_chunks)
all_total_e2e_chunks += total_e2e_chunks
if sentence_is_correct:
all_correct_sentences += 1
all_total_sentences += 1
#break
# sentlevel includes proper space detection so that's why the chunk count is higher
print('morph-sentlevel: %d/%d (%.2f%%)' % (all_correct_m_chunks, all_total_m_chunks, 100.0*float(all_correct_m_chunks)/float(all_total_m_chunks)))
print('e2e-sentlevel: %d/%d (%.2f%%)' % (all_correct_e2e_chunks, all_total_e2e_chunks, 100.0*float(all_correct_e2e_chunks)/float(all_total_e2e_chunks)))
print('morph-wordlevel: %d/%d (%.2f%%)' % (all_correct_m_chunks_wordlevel, all_total_m_chunks_wordlevel, 100.0*float(all_correct_m_chunks_wordlevel)/float(all_total_m_chunks_wordlevel)))
print('morph-wordlevel-oov: %d/%d (%.2f%%)' % (all_correct_m_chunks_wordlevel_oov, all_total_m_chunks_wordlevel_oov, 100.0*float(all_correct_m_chunks_wordlevel_oov)/float(all_total_m_chunks_wordlevel_oov)))
print('morph-wordlevel-null-segmod: %d/%d (%.2f%%)' % (all_correct_m_chunks_wordlevel_null_segmod, all_total_m_chunks_wordlevel_null_segmod, 100.0*float(all_correct_m_chunks_wordlevel_null_segmod)/float(all_total_m_chunks_wordlevel_null_segmod)))
print('morph-wordlevel-null-mod: %d/%d (%.2f%%)' % (all_correct_m_chunks_wordlevel_null_mod, all_total_m_chunks_wordlevel_null_mod, 100.0*float(all_correct_m_chunks_wordlevel_null_mod)/float(all_total_m_chunks_wordlevel_null_mod)))
print('e2e-wordlevel: %d/%d (%.2f%%)' % (all_correct_e2e_chunks_wordlevel, all_total_e2e_chunks_wordlevel, 100.0*float(all_correct_e2e_chunks_wordlevel)/float(all_total_e2e_chunks_wordlevel)))
print('e2e-wordlevel-oov: %d/%d (%.2f%%)' % (all_correct_e2e_chunks_wordlevel_oov, all_total_e2e_chunks_wordlevel_oov, 100.0*float(all_correct_e2e_chunks_wordlevel_oov)/float(all_total_e2e_chunks_wordlevel_oov)))
print('correct words (all e2e chunks correct): %d/%d (%.2f%%)' % (all_correct_words, all_total_words, 100.0*float(all_correct_words)/float(all_total_words)))
print('correct oov words (all e2e chunks correct): %d/%d (%.2f%%)' % (all_correct_words_oov, all_total_words_oov, 100.0*float(all_correct_words_oov)/float(all_total_words_oov)))
print('correct sentences (all e2e words correct): %d/%d (%.2f%%)' % (all_correct_sentences, all_total_sentences, 100.0*float(all_correct_sentences)/float(all_total_sentences)))
'''
gold_chunks = gold_sent_batch[sidx].get_label_chunks()
pred_chunks = pred_sent_batch[sidx].get_label_chunks()
correct_chunks = gold_chunks & pred_chunks
self.logger.debug('gold_chunks: ' + str(sorted(gold_chunks)))
self.logger.debug('pred_chunks: ' + str(sorted(pred_chunks)))
for (chunk_idx, chunk_label) in gold_chunks:
if chunk_label.startswith('MOD') or chunk_label.startswith('B-MOD') or chunk_label.startswith('I-MOD'):
total_mod += 1
for (chunk_idx, chunk_label) in correct_chunks:
if chunk_label.startswith('MOD') or chunk_label.startswith('B-MOD') or chunk_label.startswith('I-MOD'):
correct_mod += 1
correct_preds += len(correct_chunks)
total_preds += len(pred_chunks)
total_correct += len(gold_chunks)
accs += map(lambda items: items[0] == items[1], list(zip(gold_sent_batch[sidx].labels, pred_sent_batch[sidx].labels)))
'''