-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_prefeed.py
955 lines (751 loc) · 36.5 KB
/
model_prefeed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
import os
import sys
import copy
import logging
import numpy as np
import tensorflow as tf
from general_utils import minibatches, Progbar
# amatteson@blp-deep-server-1:~/newunitag$ LD_PRELOAD=/home/amatteson/cudnn-8.0-6.0/cuda/lib64/libcudnn.so.6 python3 model.py
# TODO: try limiting sentence size to max size per-batch (could be much more efficient)
# TODO: add pre-batching and ASGD multi-GPU training
# TODO: add joint training of two different models (morphing and tagging)
# maximum input units (pad until this number; disallow longer input)
MAX_UNIT_COUNT = 400
logging.basicConfig(format='%(asctime)s : %(levelname)s : [%(name)s] : %(message)s', level=logging.INFO)
logger = logging.getLogger('Model')
class ModelConfig(object):
def __init__(self):
self.input_unit_embedding_sizes = None
self.do_unit_embedding_training = None
self.dropout_keep_prob = None
self.combined_hidden_size = None
self.nepochs = None
self.nepoch_no_imprv = None
self.learning_rate = None
self.lr_decay = None
self.crf = None
self.output_path = None
self.model_output = None
self.log_path = None
self.batch_size = None
class BIOLexicon(object):
UNK_TOK = '<UNK>'
PAD_TOK = '<PAD>'
ReservedInputTokens = [UNK_TOK, PAD_TOK]
ReservedLabelTokens = [UNK_TOK, PAD_TOK]
def __init__(self):
self.sets = None
'''
Concatenate existing lexicon with more lexicon data
(Useful when reading train, test, dev files separately and adding each one's
lexicon)
'''
def add_lexicon_data(self, other_sets):
assert len(other_sets) >= 2, 'must have at least one input and one label'
if self.sets != None:
assert len(other_sets) == len(self.sets), 'lexicon sets must be same size'
else:
self.sets = []
for i in range(len(other_sets)):
self.sets.append(set())
# union new set with current set
for i in range(len(other_sets)):
self.sets[i] = self.sets[i] | other_sets[i]
'''
Get the corresponding lexicon (vocabulary) for input N
'''
def get_input_lexicon(self, input_idx):
# make sure there are enough sets as far as inputs and the extra label set (-1)
assert self.sets != None and len(self.sets) >= 2 and len(self.sets)-1 > input_idx
return self.sets[input_idx]
'''
Get the corresponding lexicon (vocabulary) for the label
'''
def get_label_lexicon(self):
# make sure there is at least one input and one label
assert self.sets != None and len(self.sets) >= 2
return self.sets[-1]
'''
Get the corresponding ordered lexicon (vocabulary) for input N
This is the lexicon with a consistent order and with special UNK tokens at
the beginning (so that the reserved tokens always map to index 0,1,2,etc...)
Returns forward and reverse lookup dictionaries (i->item, item->i)
'''
def get_input_lexicon_for_training(self, input_idx):
## this assumes that the input lexicon contains strings
input_lex = []
for r in BIOLexicon.ReservedInputTokens:
input_lex.append(r)
input_lex += sorted(self.get_input_lexicon(input_idx))
fwd_dict = {}
rev_dict = {}
for i, item in enumerate(input_lex):
assert i not in fwd_dict
fwd_dict[i] = item
assert item not in rev_dict
rev_dict[item] = i
return fwd_dict, rev_dict
'''
Get the corresponding ordered lexicon (vocabulary) for the label
This is the lexicon with a consistent order and with special UNK tokens at
the beginning (so that the reserved tokens always map to index 0,1,2,etc...)
Returns forward and reverse lookup dictionaries (i->item, item->i)
'''
def get_label_lexicon_for_training(self):
## this assumes that the label lexicon contains strings
label_lex = []
for r in BIOLexicon.ReservedLabelTokens:
label_lex.append(r)
label_lex += sorted(self.get_label_lexicon())
fwd_dict = {}
rev_dict = {}
for i, item in enumerate(label_lex):
assert i not in fwd_dict
fwd_dict[i] = item
assert item not in rev_dict
rev_dict[item] = i
return fwd_dict, rev_dict
def __str__(self):
return 'BIOLexicon{' + ', '.join(['Input%d: %d items' % (i, len(self.get_input_lexicon(i))) for i in range(len(self.sets)-1)]) + ', Label: %d items' % len(self.get_label_lexicon()) + '}'
def __repr__(self):
return self.__str__()
'''
Save all lexicon sets (max 999)
NOTE: assumes that ReservedInputTokens and ReservedLabelTokens stayed the same,
and that the sorted() function operates the same each time
FIXME: make sure that when saving, other items past the current number of sets
don't exist
'''
def save(self, fn_prefix):
for i in range(len(self.sets)):
with open(fn_prefix + '_%03d.lex' % i, 'w', encoding='utf-8') as fd:
for idx, item in enumerate(self.sets[i]):
assert '\n' not in item
assert len(item) > 0
if idx < len(self.sets[i])-1:
fd.write('%s\n' % item)
else: # skip extra newline on last item
fd.write('%s' % item)
'''
Load all lexicon sets (min filename: 000, max filename: 999)
NOTE: assumes that ReservedInputTokens and ReservedLabelTokens stayed the same,
and that the sorted() function operates the same each time
'''
def load(self, fn_prefix):
self.sets = []
# detect number of sets that exist
for i in range(1000):
try:
with open(fn_prefix + '_%03d.lex' % i, 'r', encoding='utf-8') as fd:
self.sets.append(set())
except FileNotFoundError:
break
assert len(self.sets) >= 2, 'must have at least one input and one label'
for i in range(len(self.sets)):
with open(fn_prefix + '_%03d.lex' % i, 'r', encoding='utf-8') as fd:
for ln in fd.read().split('\n'):
assert len(ln) > 0, 'empty input line in lexicon'
# make sure reserved input tokens are not in the set
if i < len(self.sets)-1:
assert ln not in BIOLexicon.ReservedInputTokens
else:
assert ln not in BIOLexicon.ReservedLabelTokens
self.sets[i].add(ln)
class BIODataSentence(object):
def __init__(self):
# array of inputs for this 'word' in the sentence
self.inputs = []
# label for this 'word' in the sentence (only one label possible)
self.labels = []
# cached sentence length
self.sentence_length = 0
'''
Get inputs for specified index, but padded
If embed_id_dict is not None, use as dictionary to embed each input item
'''
def get_inputs_padded(self, input_idx, max_length, padding_token, embed_id_dict=None, embed_oov_token=None):
assert len(self.inputs) > 0 # so that checking len(self.inputs[0]) is possible
assert input_idx >= 0 and input_idx < len(self.inputs[0])
assert type(max_length) is int
# this assertion may fail during the evaluation phase
# FIXME: how to handle a sentence that is too long for the input?
assert len(self.inputs) <= max_length, '%d > %d' % (len(self.inputs), max_length)
retval = []
for inp in self.inputs:
if embed_id_dict != None:
if inp[input_idx] in embed_id_dict:
retval.append(embed_id_dict[inp[input_idx]])
else:
assert embed_oov_token != None, 'must specify OOV token for embedding'
retval.append(embed_oov_token)
else:
retval.append(inp[input_idx])
if max_length > len(retval):
# add padding
for i in range(max_length - len(retval)):
if embed_id_dict != None:
# embed padding
retval.append(embed_id_dict[padding_token])
else:
retval.append(padding_token)
return retval
'''
Get labels, but padded
If embed_id_dict is not None, use as dictionary to embed each input item
'''
def get_labels_padded(self, max_length, padding_token, embed_id_dict=None, embed_oov_token=None):
assert type(max_length) is int
assert len(self.labels) <= max_length
retval = []
for lab in self.labels:
if embed_id_dict != None:
if lab in embed_id_dict:
retval.append(embed_id_dict[lab])
else:
assert embed_oov_token != None, 'must specify OOV token for embedding'
retval.append(embed_oov_token)
else:
retval.append(lab)
if max_length > len(retval):
# add padding
for i in range(max_length - len(retval)):
if embed_id_dict != None:
# embed padding
retval.append(embed_id_dict[padding_token])
else:
retval.append(padding_token)
return retval
'''
Get labels, chunked by (idx, val)
Makes evaluation easier
'''
def get_label_chunks(self):
chunk_set = set()
for idx, label in enumerate(self.labels):
chunk_set.add((idx, label))
return chunk_set
'''
Concatenate all inputs and labels by tab and return string
'''
def __str__(self):
return '\n'.join(['\t'.join(list(inputline[0]) + [inputline[1]]) for inputline in zip(self.inputs, self.labels)])
def __repr__(self):
return self.__str__()
class BIODataInput(object):
def __init__(self, fn):
self.fn = fn
self.sentences = []
self.num_inputs = None
blocks = None
min_sent_length = float('inf')
max_sent_length = float('-inf')
with open(fn, 'r', encoding='utf-8') as fd:
blocks = fd.read().split('\n\n')
assert len(blocks) > 0, 'input is empty'
for pidx, item in enumerate(blocks):
sent = BIODataSentence()
item = item.strip()
if len(item) == 0:
logger.error('%s: empty block at idx %d' % (fn, pidx))
continue
for widx, wordline in enumerate(item.split('\n')):
wordline = wordline.strip()
if len(wordline) == 0:
logger.error('%s: empty wordline at para idx %d, wordline idx %d' % (fn, pidx, widx))
continue
all_ins = wordline.split('\t')
assert len(all_ins) >= 2, '%s: wordline at para idx %d, wordline idx %d: must have at least one input and one label' % (fn, pidx, widx)
word_inputs = []
for input_unit in all_ins[:-1]:
if not input_unit:
continue
assert input_unit not in BIOLexicon.ReservedInputTokens, '%s: wordline at para idx %d, wordline idx %d: input unit must not be reserved token' % (fn, pidx, widx)
word_inputs.append(input_unit)
if self.num_inputs != None:
assert len(word_inputs) == self.num_inputs, '%s: wordline at para idx %d, wordline idx %d: number of inputs differs per sentence' % (fn, pidx, widx)
else:
self.num_inputs = len(word_inputs)
logger.info('%s: detected %d input(s) and 1 label' % (fn, self.num_inputs))
sent.inputs.append(tuple(word_inputs))
assert all_ins[-1] not in BIOLexicon.ReservedLabelTokens, '%s: wordline at para idx %d, wordline idx %d: label must not be reserved token' % (fn, pidx, widx)
sent.labels.append(all_ins[-1])
assert len(sent.inputs) == len(sent.labels), 'number of wordline inputs and labels must be same'
sent.sentence_length = len(sent.labels)
assert sent.sentence_length > 0, 'sentence length should be greater than zero'
if sent.sentence_length < min_sent_length:
min_sent_length = sent.sentence_length
if sent.sentence_length > max_sent_length:
max_sent_length = sent.sentence_length
self.sentences.append(sent)
logger.info('%s: read %d BIO sentences (min length: %d, max length: %d)' % (fn, len(self.sentences), min_sent_length, max_sent_length))
'''
Return set of inputs and labels that occur
[set(input1), set(input2), set(inputN), set(label)]
'''
def get_lexicon(self):
sets = []
for i in range(self.num_inputs):
sets.append(set())
# for labels
sets.append(set())
for sidx, sent in enumerate(self.sentences):
# add all inputs for each wordline to the corresponding set for that input
for i in range(self.num_inputs):
for widx, perword_inputs in enumerate(sent.inputs):
sets[i].add(perword_inputs[i])
# add each wordline's label to the set
for widx, word_label in enumerate(sent.labels):
sets[-1].add(word_label)
return sets
# TODO: joint model
'''
class JointModel(object):
def __init__(self):
self.models = []
def add_submodel(self, submodel):
self.models.append(submodel)
def add_joint_loss_op(self):
self.joint_loss = tf.sum(self.
'''
class MorphingTaggingModel(object):
def __init__(self, lexicon, config):
#nested_d = tf.constant(10.0, name="d")
#assert nested_d.op.name == "morphing/nested/d", nested_d.op.name
self.logger = logging.getLogger('MorphingTaggingModel')
self.lexicon = lexicon
self.config = config
self.idx_to_unit0, self.unit0_to_idx = self.lexicon.get_input_lexicon_for_training(0)
self.idx_to_label, self.label_to_idx = self.lexicon.get_label_lexicon_for_training()
self.add_placeholders()
self.add_embeddings_op()
self.add_logits_op()
self.add_pred_op()
self.add_loss_op()
self.add_train_op()
self.add_init_op()
with tf.Session() as sess:
sess.run(self.init)
tvars = tf.trainable_variables()
tvars_vals = sess.run(tvars)
for var, val in zip(tvars, tvars_vals):
print(var.name) # , val) # Prints the name of the variable alongside its value.
def add_placeholders(self):
'''
Adds placeholders to self
'''
# words or morphemes
# shape = (batch size, max length of sentence in batch)
self.unit0_ids = tf.placeholder(tf.int32, shape=[None, None],
name='unit0_ids')
#assert self.unit0_ids.op.name == "morphing/nested/unit0_ids", self.unit0_ids.op.name
# number of "units" (words or morphemes)
# shape = (batch size)
self.sequence_lengths = tf.placeholder(tf.int32, shape=[None],
name='sequence_lengths')
# shape = (batch size, max length of sentence in batch)
self.labels = tf.placeholder(tf.int32, shape=[None, None],
name='labels')
# hyper parameters
# dropout keep probability (1.0 means keep all data)
self.dropout_keep_prob = tf.placeholder(dtype=tf.float32, shape=[],
name='dropout_keep_prob')
# learning rate
self.learning_rate = tf.placeholder(dtype=tf.float32, shape=[],
name='learning_rate')
def add_embeddings_op(self):
'''
Adds embeddings to self (for first unit)
'''
combined_embeddings = None
with tf.variable_scope('unit0'):
# initialize unit 0's vocabulary embeddings as random normal distribution
unit0_initial_value = tf.random_normal([len(self.idx_to_unit0),
self.config.input_unit_embedding_sizes[0]],
stddev=1.0 / (self.config.input_unit_embedding_sizes[0]**.5), \
seed=0)
_unit0_embeddings = tf.Variable(initial_value=unit0_initial_value,
name='_unit0_embeddings', dtype=tf.float32,
trainable=self.config.do_unit_embedding_training[0])
combined_embeddings = tf.nn.embedding_lookup(_unit0_embeddings,
self.unit0_ids,
name='unit0_embeddings')
self.logger.info('... Adding unit 0 embeddings with shape: ' + \
str(combined_embeddings.get_shape()))
self.logger.info('Concatenated embedding shape: ' + \
str(combined_embeddings.get_shape()))
# dropout created in static graph: takes effect if necessary when
# referring to self.combined_embeddings
self.combined_embeddings = tf.nn.dropout(combined_embeddings,
keep_prob=self.dropout_keep_prob)
def add_logits_op(self):
'''
Adds logits to self
'''
# number of output labels
nlabels = len(self.idx_to_label)
with tf.variable_scope('bi-lstm'):
lstm_cell = tf.contrib.rnn.LSTMCell(self.config.combined_hidden_size)
(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(lstm_cell,
lstm_cell, self.combined_embeddings, sequence_length=self.sequence_lengths,
dtype=tf.float32)
output = tf.concat([output_fw, output_bw], axis=-1)
output = tf.nn.dropout(output, self.dropout_keep_prob)
with tf.variable_scope('proj'):
W = tf.get_variable('W', shape=[2*self.config.combined_hidden_size, nlabels],
dtype=tf.float32, initializer=tf.random_normal_initializer( \
stddev=1.0 / (2*self.config.combined_hidden_size)**.5, \
seed=0))
print('W.op.name', W.op.name)
b = tf.get_variable('b', shape=[nlabels], dtype=tf.float32,
initializer=tf.zeros_initializer())
ntime_steps = tf.shape(output)[1]
output = tf.reshape(output, [-1, 2*self.config.combined_hidden_size])
pred = tf.matmul(output, W) + b
self.logits = tf.reshape(pred, [-1, ntime_steps, nlabels])
def add_pred_op(self):
'''
Adds labels_pred to self
'''
if not self.config.crf:
self.labels_pred = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32)
def add_loss_op(self):
'''
Adds loss to self
'''
if self.config.crf:
log_likelihood, self.transition_params = tf.contrib.crf.crf_log_likelihood(
self.logits, self.labels, self.sequence_lengths)
self.loss = tf.reduce_mean(-log_likelihood)
else:
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.labels)
mask = tf.sequence_mask(self.sequence_lengths)
losses = tf.boolean_mask(losses, mask)
print('losses op name', losses.op.name)
self.loss = tf.reduce_mean(losses)
print('loss op name', self.loss.op.name)
# for tensorboard
tf.summary.scalar('loss', self.loss)
def add_train_op(self):
'''
Add train_op to self
'''
current_scope = tf.get_default_graph().get_name_scope()
print('current scope', current_scope)
current_train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
current_scope)
print('current_train_vars', current_train_vars)
with tf.variable_scope('train_step'):
optimizer = tf.train.AdamOptimizer(self.learning_rate)
self.train_op = optimizer.minimize(self.loss, var_list=current_train_vars)
def add_init_op(self):
## TODO: check that already initialize variables don't get
# reinitialized (so that models don't collide with each other)
self.init = tf.global_variables_initializer()
def add_summary(self, sess):
# tensorboard stuff
self.merged = tf.summary.merge_all()
self.file_writer = tf.summary.FileWriter(self.config.output_path, sess.graph)
'''
Prepare a feed dict for the specified model based on the given input batch
Fills tf variables and placeholders with necessary values for sentence batch
bio_data_sentence_list: list of BIODataSentence objects
dropout_keep_prob: inverse dropout rate: 1.0 means keep all data
learning_rate: optimizer learning rate
'''
def prepare_feed_dict(self, bio_data_sentence_batch, dropout_keep_prob=None, learning_rate=None):
input_batch = []
labels_batch = []
sequence_lengths = []
for sidx, sent in enumerate(bio_data_sentence_batch): # sent:BIODataSentence
## for now, only using first input
input_batch.append(sent.get_inputs_padded(
input_idx=0,
max_length=MAX_UNIT_COUNT,
padding_token=BIOLexicon.PAD_TOK,
embed_id_dict=self.unit0_to_idx,
embed_oov_token=BIOLexicon.UNK_TOK))
labels_batch.append(sent.get_labels_padded(
max_length=MAX_UNIT_COUNT,
padding_token=BIOLexicon.PAD_TOK,
embed_id_dict=self.label_to_idx,
embed_oov_token=BIOLexicon.UNK_TOK))
sequence_lengths.append(sent.sentence_length)
self.logger.debug('input_batch[%d] (len=%d): %s' % (sidx, len(input_batch[sidx]), str(input_batch[sidx])))
self.logger.debug('labels_batch[%d] (len=%d): %s' % (sidx, len(labels_batch[sidx]), str(labels_batch[sidx])))
self.logger.debug('sequence_length[%d]: %d' % (sidx, sequence_lengths[sidx]))
assert len(input_batch[sidx]) == len(labels_batch[sidx])
feed = {}
feed[self.unit0_ids] = input_batch
feed[self.sequence_lengths] = sequence_lengths
feed[self.labels] = labels_batch
if self.dropout_keep_prob != None:
feed[self.dropout_keep_prob] = dropout_keep_prob
if self.learning_rate != None:
feed[self.learning_rate] = learning_rate
return feed, sequence_lengths
'''
Prepare a feed dict for the specified model based on the given input batch
Fills tf variables and placeholders with necessary values for sentence batch
bio_data_sentence_list: list of BIODataSentence objects
dropout_keep_prob: inverse dropout rate: 1.0 means keep all data
learning_rate: optimizer learning rate
'''
def prepare_feed_dict_optimized(self, bio_data_sentence_batch, dropout_keep_prob=None, learning_rate=None):
input_batch = []
labels_batch = []
sequence_lengths = []
for sidx, sent in enumerate(bio_data_sentence_batch): # sent:BIODataSentence
## for now, only using first input
input_batch.append(sent.cache_inputs0_padded)
labels_batch.append(sent.cache_labels_padded)
sequence_lengths.append(sent.sentence_length)
self.logger.debug('input_batch[%d] (len=%d): %s' % (sidx, len(input_batch[sidx]), str(input_batch[sidx])))
self.logger.debug('labels_batch[%d] (len=%d): %s' % (sidx, len(labels_batch[sidx]), str(labels_batch[sidx])))
self.logger.debug('sequence_length[%d]: %d' % (sidx, sequence_lengths[sidx]))
assert len(input_batch[sidx]) == len(labels_batch[sidx])
feed = {}
feed[self.unit0_ids] = input_batch
feed[self.sequence_lengths] = sequence_lengths
feed[self.labels] = labels_batch
if self.dropout_keep_prob != None:
feed[self.dropout_keep_prob] = dropout_keep_prob
if self.learning_rate != None:
feed[self.learning_rate] = learning_rate
return feed, sequence_lengths
def run_epoch(self, sess, train, dev, epoch):
'''
Performs one complete pass over the train set and evaluates on dev
Args:
sess: tensorflow session
train: large BIODataSentence list (training set)
dev: large BIODataSentence list (dev set)
epoch: (int) number of the epoch
'''
nbatches = len(train) // self.config.batch_size
if len(train) % self.config.batch_size != 0:
nbatches += 1
prog = Progbar(target=nbatches)
for i, sent_batch in enumerate(minibatches(train, self.config.batch_size)):
fd, _ = self.prepare_feed_dict_optimized( \
bio_data_sentence_batch=sent_batch, \
dropout_keep_prob=self.config.dropout_keep_prob, \
learning_rate=self.config.learning_rate)
#_, train_loss, summary = sess.run([self.train_op, self.loss, self.merged], feed_dict=fd)
_, train_loss = sess.run([self.train_op, self.loss], feed_dict=fd)
prog.update(i + 1, [('train loss', train_loss)])
# tensorboard
#if i % 10 == 0:
#self.file_writer.add_summary(summary, epoch*nbatches + i)
acc, f1, mod_p = self.run_evaluate(sess, dev)
self.logger.info('- dev acc {:04.2f} - f1 {:04.2f} - mod prec {:04.2f}'.format(100*acc, 100*f1, 100*mod_p))
return acc, f1
def predict_batch(self, sess, sents):
'''
Args:
sess: a tensorflow session
sents: list of BIODataSentence objects (batch)
(labels can be filled with PAD or other reserved value by
default, or may be passed in as gold value for convenience)
Returns:
pred_sents: list of new BIODataSentence objects filled with
predicted label data
'''
# ?? enforce?
# assert len(sents) == self.config.batch_size
# dropout_keep_prob forced to 1.0 at inference time
fd, sequence_lengths = self.prepare_feed_dict( \
bio_data_sentence_batch=sents, \
dropout_keep_prob=1.0)
assert len(sequence_lengths) == len(sents)
pred_sents = copy.deepcopy(sents)
for sidx, s in enumerate(pred_sents):
# s.labels = []
assert sequence_lengths[sidx] == len(s.inputs)
# for i in range(sequence_lengths[sidx]):
# s.labels.append(BIOLexicon.PAD_TOK)
if self.config.crf:
viterbi_sequences = []
logits, transition_params = sess.run([self.logits, self.transition_params],
feed_dict=fd)
# iterate over the sentences
for logit, sequence_length in zip(logits, sequence_lengths):
# keep only the valid time steps
logit = logit[:sequence_length]
viterbi_sequence, viterbi_score = tf.contrib.crf.viterbi_decode(
logit, transition_params)
viterbi_sequences.append(viterbi_sequence)
for sidx, s in enumerate(pred_sents):
s.labels = []
for i in range(sequence_lengths[sidx]):
## FIXME: is it possible for the NN to return a non-sensible value here?
s.labels.append(self.idx_to_label[viterbi_sequences[sidx][i]])
#return viterbi_sequences, sequence_lengths
else:
labels_pred = sess.run(self.labels_pred, feed_dict=fd)
## TODO: check sequence_lengths against input lengths
for sidx, s in enumerate(pred_sents):
s.labels = []
for i in range(sequence_lengths[sidx]):
## FIXME: is it possible for the NN to return a non-sensible value here?
s.labels.append(self.idx_to_label[labels_pred[sidx][i]])
#return labels_pred, sequence_lengths
return pred_sents
def run_evaluate(self, sess, test):
'''
Evaluates performance on specified test/dev set
Args:
sess: tensorflow session
test: large BIODataSentence list (dev/test set)
'''
#nbatches = len(test) // self.config.batch_size
#if len(test) % self.config.batch_size != 0:
# nbatches += 1
correct_preds = 0
total_preds = 0
total_correct = 0
correct_mod = 0
total_mod = 0
accs = []
#prog = Progbar(target=nbatches)
for i, gold_sent_batch in enumerate(minibatches(test, self.config.batch_size)):
pred_sent_batch = self.predict_batch(sess, gold_sent_batch)
assert len(gold_sent_batch) == len(pred_sent_batch)
for sidx in range(len(gold_sent_batch)):
gold_chunks = gold_sent_batch[sidx].get_label_chunks()
pred_chunks = pred_sent_batch[sidx].get_label_chunks()
correct_chunks = gold_chunks & pred_chunks
self.logger.debug('gold_chunks: ' + str(sorted(gold_chunks)))
self.logger.debug('pred_chunks: ' + str(sorted(pred_chunks)))
for (chunk_idx, chunk_label) in gold_chunks:
if chunk_label.startswith('MOD') or chunk_label.startswith('B-MOD') or chunk_label.startswith('I-MOD'):
total_mod += 1
for (chunk_idx, chunk_label) in correct_chunks:
if chunk_label.startswith('MOD') or chunk_label.startswith('B-MOD') or chunk_label.startswith('I-MOD'):
correct_mod += 1
correct_preds += len(correct_chunks)
total_preds += len(pred_chunks)
total_correct += len(gold_chunks)
accs += map(lambda items: items[0] == items[1], list(zip(gold_sent_batch[sidx].labels, pred_sent_batch[sidx].labels)))
self.logger.info('correct_preds: ' + str(correct_preds))
self.logger.info('total_preds: ' + str(total_preds))
self.logger.info('total_correct: ' + str(total_correct))
p = correct_preds / total_preds if correct_preds > 0 else 0
r = correct_preds / total_correct if correct_preds > 0 else 0
mod_p = correct_mod / total_mod if correct_mod > 0 else 0
f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0
acc = np.mean(accs)
return acc, f1, mod_p
def train(self, sent_train, sent_dev):
best_score = 0
saver = tf.train.Saver()
# for early stopping
nepoch_no_imprv = 0
#config = tf.ConfigProto()
#config.gpu_options.allow_growth = True
#with tf.Session(config=config) as sess:
with tf.Session() as sess:
sess.run(self.init)
# tensorboard
self.add_summary(sess)
for epoch in range(self.config.nepochs):
self.logger.info('Epoch {:} out of {:}'.format(epoch + 1, self.config.nepochs))
acc, f1 = self.run_epoch(sess, sent_train, sent_dev, epoch)
# decay learning rate
self.config.learning_rate *= self.config.lr_decay
# early stopping and saving best parameters
if f1 >= best_score:
nepoch_no_imprv = 0
if not os.path.exists(self.config.model_output):
os.makedirs(self.config.model_output)
saver.save(sess, self.config.model_output)
best_score = f1
self.logger.info('- new best score!')
else:
nepoch_no_imprv += 1
if nepoch_no_imprv >= self.config.nepoch_no_imprv:
self.logger.info('- early stopping {} epochs without improvement'.format(
nepoch_no_imprv))
break
def evaluate(self, sent_test):
saver = tf.train.Saver()
with tf.Session() as sess:
self.logger.info('Testing model over test set')
saver.restore(sess, self.config.model_output)
acc, f1, mod_p = self.run_evaluate(sess, sent_test)
self.logger.info('- test acc {:04.2f} - f1 {:04.2f} - mod prec {:04.2f}'.format(100*acc, 100*f1, 100*mod_p))
morph_train = BIODataInput('data/entire_500actions_400len/morph_train.txt')
morph_test = BIODataInput('data/entire_500actions_400len/morph_test.txt')
morph_dev = BIODataInput('data/entire_500actions_400len/morph_dev.txt')
morph_lexicon = BIOLexicon()
morph_lexicon.add_lexicon_data(morph_train.get_lexicon())
#morph_lexicon.add_lexicon_data(morph_test.get_lexicon())
#morph_lexicon.add_lexicon_data(morph_dev.get_lexicon())
print('morph lexicon', morph_lexicon)
morph_lexicon.save('morph_lexicon')
tag_train = BIODataInput('data/entire_500actions_400len/tag_train.txt')
tag_test = BIODataInput('data/entire_500actions_400len/tag_test.txt')
tag_dev = BIODataInput('data/entire_500actions_400len/tag_dev.txt')
tag_lexicon = BIOLexicon()
tag_lexicon.add_lexicon_data(tag_train.get_lexicon())
#tag_lexicon.add_lexicon_data(tag_test.get_lexicon())
#tag_lexicon.add_lexicon_data(tag_dev.get_lexicon())
print('tagging lexicon', tag_lexicon)
config = ModelConfig()
config.input_unit_embedding_sizes = [300]
config.do_unit_embedding_training = [True]
config.dropout_keep_prob = 0.7
config.combined_hidden_size = 300
config.nepochs = 5
config.nepoch_no_imprv = 3
config.learning_rate = 0.001
config.lr_decay = 0.9
# especially for CRF...output action count is important for memory
# max sentence length can also be a factor
# if you run out of memory, check current_train_vars
# here are some reasonable values (471 morphing output actions):
#
#current_train_vars [<tf.Variable 'morphing/unit0/_unit0_embeddings:0' shape=(1902, 300) dtype=float32_ref>, <tf.Variable 'morphing/bi-lstm/bidirectional_rnn/fw/lstm_cell/kernel:0' shape=(600, 1200) dtype=float32_ref>, <tf.Variable 'morphing/bi-lstm/bidirectional_rnn/fw/lstm_cell/bias:0' shape=(1200,) dtype=float32_ref>, <tf.Variable 'morphing/proj/W:0' shape=(600, 471) dtype=float32_ref>, <tf.Variable 'morphing/proj/b:0' shape=(471,) dtype=float32_ref>, <tf.Variable 'morphing/transitions:0' shape=(471, 471) dtype=float32_ref>]
#
config.crf = True
config.output_path = 'model/'
config.model_output = config.output_path + 'output/'
config.log_path = config.model_output + 'log.txt'
config.batch_size = 16
g1 = tf.Graph()
with g1.as_default() as g:
with tf.variable_scope('morphing'):
morph_model = MorphingTaggingModel(lexicon=morph_lexicon, config=config)
sentcount = len(morph_train.sentences)
morph_train.cached_sentences = []
for sidx, sent in enumerate(morph_train.sentences):
if sidx % 20 == 0:
#print('Preprocesing sentence %d/%d' % (sidx, sentcount))
pass
if len(sent.labels) > MAX_UNIT_COUNT:
#print('Skipping sentence: too long')
continue
sent.cache_inputs0_padded = sent.get_inputs_padded(
input_idx=0,
max_length=MAX_UNIT_COUNT,
padding_token=BIOLexicon.PAD_TOK,
embed_id_dict=morph_model.unit0_to_idx,
embed_oov_token=BIOLexicon.UNK_TOK)
sent.cache_labels_padded = sent.get_labels_padded(
max_length=MAX_UNIT_COUNT,
padding_token=BIOLexicon.PAD_TOK,
embed_id_dict=morph_model.label_to_idx,
embed_oov_token=BIOLexicon.UNK_TOK)
morph_train.cached_sentences.append(sent)
morph_model.train(sent_train=morph_train.cached_sentences, sent_dev=morph_dev.sentences)
morph_model.evaluate(sent_test=morph_test.sentences)
'''
#g2 = tf.Graph()
with g1.as_default() as g:
with tf.variable_scope('tagging'):
# HACK: debugging only: use all dev set
tag_model = MorphingTaggingModel(lexicon=tag_lexicon, config=config)
tag_model.train(sent_train=tag_dev.sentences, sent_dev=tag_dev.sentences)
# tag_model.evaluate(sent_test=tag_dev.sentences)
tf.reset_default_graph()
'''
#joint_loss = morph_model.loss + tag_model.loss