forked from dgryski/go-simstore
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimstore.go
234 lines (180 loc) · 5.43 KB
/
simstore.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Package simstore implements a storage layer for simhash locality-sensitive hashes.
/*
This package is an implementation of section 3 of "Detecting Near-Duplicates
for Web Crawling" by Manku, Jain, and Sarma,
http://www2007.org/papers/paper215.pdf
It is hard-coded for hamming distance 3 or 6.
*/
package simstore
import (
"runtime"
"sort"
"sync"
"github.com/dgryski/go-bits"
)
// TODO(dgryski): split hashes and docid into different arrays to optimize cache usage
// TODO(dgryski): t.add(hash, docid) to make struct change easier
type entry struct {
hash uint64
docid uint64
}
// TODO(dgryski): table persistent via mmap
type table []entry
func (t table) Len() int { return len(t) }
func (t table) Swap(i, j int) { t[i], t[j] = t[j], t[i] }
func (t table) Less(i, j int) bool { return t[i].hash < t[j].hash }
const mask3 = 0xfffffff000000000
func (t table) find(sig, mask uint64, d int) []uint64 {
prefix := sig & mask
// TODO(dgryski): interpolation search instead of binary search; 2x speed up vs. sort.Search()
i := sort.Search(len(t), func(i int) bool { return t[i].hash >= prefix })
if i == -1 {
return nil
}
var ids []uint64
for i < len(t) && t[i].hash&mask == prefix {
if distance(t[i].hash, sig) <= d {
ids = append(ids, t[i].docid)
}
i++
}
return ids
}
// Store is a storage engine for 64-bit hashes
type Store struct {
tables []table
}
// New3 returns a Store for searching hamming distance <= 3
func New3(hashes int) *Store {
s := Store{}
s.tables = make([]table, 16)
if hashes != 0 {
for i := range s.tables {
s.tables[i] = make([]entry, 0, hashes)
}
}
return &s
}
// Add inserts a signature and document id into the store
func (s *Store) Add(sig uint64, docid uint64) {
var t int
for i := 0; i < 4; i++ {
p := sig
s.tables[t] = append(s.tables[t], entry{hash: p, docid: docid})
t++
p = (sig & 0xffff000000ffffff) | (sig & 0x0000fff000000000 >> 12) | (sig & 0x0000000fff000000 << 12)
s.tables[t] = append(s.tables[t], entry{hash: p, docid: docid})
t++
p = (sig & 0xffff000fff000fff) | (sig & 0x0000fff000000000 >> 24) | (sig & 0x0000000000fff000 << 24)
s.tables[t] = append(s.tables[t], entry{hash: p, docid: docid})
t++
p = (sig & 0xffff000ffffff000) | (sig & 0x0000fff000000000 >> 36) | (sig & 0x0000000000000fff << 36)
s.tables[t] = append(s.tables[t], entry{hash: p, docid: docid})
t++
sig = (sig << 16) | (sig >> (64 - 16))
}
}
func (*Store) unshuffle(sig uint64, t int) uint64 {
const m2 = 0x0000fff000000000
t4 := t % 4
shift := 12 * uint64(t4)
m3 := uint64(m2 >> shift)
m1 := ^uint64(0) &^ (m2 | m3)
sig = (sig & m1) | (sig & m2 >> shift) | (sig & m3 << shift)
sig = (sig >> (16 * (uint64(t) / 4))) | (sig << (64 - (16 * (uint64(t) / 4))))
return sig
}
type limiter chan struct{}
func (l limiter) enter() { l <- struct{}{} }
func (l limiter) leave() { <-l }
// Finish prepares the store for searching. This must be called once after all
// the signatures have been added via Add().
func (s *Store) Finish() {
l := make(limiter, runtime.GOMAXPROCS(0))
var wg sync.WaitGroup
for i := range s.tables {
l.enter()
wg.Add(1)
go func(i int) {
sort.Sort(s.tables[i])
l.leave()
wg.Done()
}(i)
}
wg.Wait()
}
// Find searches the store for all hashes hamming distance 3 or less from the
// query signature. It returns the associated list of document ids.
func (s *Store) Find(sig uint64) []uint64 {
var ids []uint64
// TODO(dgryski): search in parallel
var t int
for i := 0; i < 4; i++ {
p := sig
ids = append(ids, s.tables[t].find(p, mask3, 3)...)
t++
p = (sig & 0xffff000000ffffff) | (sig & 0x0000fff000000000 >> 12) | (sig & 0x0000000fff000000 << 12)
ids = append(ids, s.tables[t].find(p, mask3, 3)...)
t++
p = (sig & 0xffff000fff000fff) | (sig & 0x0000fff000000000 >> 24) | (sig & 0x0000000000fff000 << 24)
ids = append(ids, s.tables[t].find(p, mask3, 3)...)
t++
p = (sig & 0xffff000ffffff000) | (sig & 0x0000fff000000000 >> 36) | (sig & 0x0000000000000fff << 36)
ids = append(ids, s.tables[t].find(p, mask3, 3)...)
t++
sig = (sig << 16) | (sig >> (64 - 16))
}
return unique(ids)
}
// SmallStore3 is a simstore for distance k=3 with smaller memory requirements
type SmallStore3 struct {
tables [4][1 << 16]table
}
func New3Small(hashes int) *SmallStore3 {
return &SmallStore3{}
}
func (s *SmallStore3) Add(sig uint64, docid uint64) {
for i := 0; i < 4; i++ {
prefix := (sig & 0xffff000000000000) >> (64 - 16)
s.tables[i][prefix] = append(s.tables[i][prefix], entry{hash: sig, docid: docid})
sig = (sig << 16) | (sig >> (64 - 16))
}
}
func (s *SmallStore3) Find(sig uint64) []uint64 {
var ids []uint64
for i := 0; i < 4; i++ {
prefix := (sig & 0xffff000000000000) >> (64 - 16)
t := s.tables[i][prefix]
for i := range t {
if distance(t[i].hash, sig) <= 3 {
ids = append(ids, t[i].docid)
}
}
sig = (sig << 16) | (sig >> (64 - 16))
}
return unique(ids)
}
func (s *SmallStore3) Finish() {
for i := range s.tables {
for p := range s.tables[i] {
sort.Sort(s.tables[i][p])
}
}
}
func unique(ids []uint64) []uint64 {
// dedup ids
uniq := make(map[uint64]struct{})
for _, id := range ids {
uniq[id] = struct{}{}
}
ids = ids[:0]
for k := range uniq {
ids = append(ids, k)
}
return ids
}
// TODO(dgryski): replacing this with popcnt() would be ~25% speedup
// distance returns the hamming distance between v1 and v2
func distance(v1 uint64, v2 uint64) int {
return int(bits.Popcnt(v1 ^ v2))
}