-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path0_matrix_add_N_100_100.cu
81 lines (63 loc) · 2.26 KB
/
0_matrix_add_N_100_100.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <iostream>
#include <cuda_runtime.h>
const int N = 100;
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)
C[i][j] = A[i][j] + B[i][j];
}
int main() {
float A[N][N], B[N][N], C[N][N];
// Initialize matrices A and B (you may use your own initialization logic)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
A[i][j] = 1.0f; // You can replace this with your initialization logic
B[i][j] = 2.0f; // You can replace this with your initialization logic
}
}
float (*d_A)[N], (*d_B)[N], (*d_C)[N];
// Allocate device memory
cudaMalloc((void **)&d_A, N * N * sizeof(float));
cudaMalloc((void **)&d_B, N * N * sizeof(float));
cudaMalloc((void **)&d_C, N * N * sizeof(float));
// Copy data from host to device
cudaMemcpy(d_A, A, N * N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, N * N * sizeof(float), cudaMemcpyHostToDevice);
// Create CUDA events for timing
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
// Record the start event
cudaEventRecord(start);
// Kernel invocation with one block of N x N x 1 threads
dim3 threadsPerBlock(10, 10);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(d_A, d_B, d_C);
// Record the stop event
cudaEventRecord(stop);
cudaEventSynchronize(stop);
// Calculate and print the elapsed time
float milliseconds = 0.0f;
cudaEventElapsedTime(&milliseconds, start, stop);
std::cout << "Time elapsed: " << milliseconds << " ms" << std::endl;
// Copy result from device to host
cudaMemcpy(C, d_C, N * N * sizeof(float), cudaMemcpyDeviceToHost);
// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
// Print the result (optional)
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
std::cout << C[i][j] << " ";
}
std::cout << std::endl;
}
// Destroy CUDA events
cudaEventDestroy(start);
cudaEventDestroy(stop);
return 0;
}