-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathWavelet_HFCM.py
790 lines (645 loc) · 32.4 KB
/
Wavelet_HFCM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
import numpy as np
import matplotlib.pyplot as plt
from FCMs import transferFunc, reverseFunc
import pandas as pd
import time
def splitData(dataset, ratio=0.85):
len_train_data = int(len(dataset) * ratio)
return dataset[:len_train_data], dataset[len_train_data:]
# form feature matrix from sequence
def create_dataset(seq, belta, Order, current_node):
Nc, K = seq.shape
samples = np.zeros(shape=(K, Order * Nc + 2))
for m in range(Order, K):
for n_idx in range(Nc):
for order in range(Order):
samples[m - Order, n_idx * Order + order + 1] = seq[n_idx, m - 1 - order]
samples[m - Order, 0] = 1
samples[m - Order, -1] = reverseFunc(seq[current_node, m], belta)
return samples
def predict(samples, weight, steepness, belta):
# samples: each row is a sample, each column is one feature
K, _ = samples.shape
predicted_data = np.zeros(shape=(1, K))
for t in range(K):
features = samples[t, :-1]
predicted_data[0, t] = transferFunc(steepness * np.dot(weight, features), belta)
return predicted_data
# normalize data set into [0, 1] or [-1, 1]
def normalize(ori_data, flag='01'):
data = ori_data.copy()
if len(data.shape) > 1: # 2-D
N , K = data.shape
minV = np.zeros(shape=K)
maxV = np.zeros(shape=K)
for i in range(N):
minV[i] = np.min(data[i, :])
maxV[i] = np.max(data[i, :])
if np.abs(maxV[i] - minV[i]) > 0.00001:
if flag == '01': # normalize to [0, 1]
data[i, :] = (data[i, :] - minV[i]) / (maxV[i] - minV[i])
else:
data[i, :] = 2 * (data[i, :] - minV[i]) / (maxV[i] - minV[i]) - 1
return data, maxV, minV
else: # 1D
minV = np.min(data)
maxV = np.max(data)
if np.abs(maxV - minV) > 0.00001:
if flag == '01': # normalize to [0, 1]
data = (data - minV) / (maxV - minV)
else:
data = 2 * (data - minV) / (maxV - minV) - 1
return data, maxV, minV
# re-normalize data set from [0, 1] or [-1, 1] into its true dimension
def re_normalize(ori_data, maxV, minV, flag='01'):
data = ori_data.copy()
if len(data.shape) > 1: # 2-D
Nc, K = data.shape
for i in range(Nc):
if np.abs(maxV[i] - minV[i]) > 0.00001:
if flag == '01': # normalize to [0, 1]
data[i, :] = data[i, :] * (maxV[i] - minV[i]) + minV[i]
else:
data[i, :] = (data[i, :] + 1) * (maxV[i] - minV[i]) / 2 + minV[i]
else: # 1-D
if np.abs(maxV - minV) > 0.00001:
if flag == '01': # normalize to [0, 1]
data = data * (maxV - minV) + minV
else:
data = (data + 1) * (maxV - minV) / 2 + minV
return data
def wavelet_transform(x, J):
N = len(x)
C = np.zeros(shape=(J + 1, N))
# W: wavelet coefficients
W = np.zeros(shape=(J + 1, N))
C[0, :] = x.copy()
for j in range(1, J + 1):
for k in range(1, N):
C[j, k] = 1 / 2 * (C[j - 1, k] + C[j - 1, k - np.power(2, j - 1)])
W[j, k] = C[j - 1][k] - C[j, k]
W[0, :] = C[J, :]
return W[:, np.power(2, J):]
def wavelet_reconstruct(predicted_coffis):
return np.sum(predicted_coffis, axis=0)
def HFCM_ridge(dataset1, ratio=0.7, plot_flag=False):
# dataset = np.diff(dataset)
# from modwt import modwt, imodwt
# dataset = pd.read_csv('AirPassengers.csv', delimiter=',').as_matrix()[:, 2]
normalize_style = '-01'
dataset_copy = dataset1.copy()
dataset, maxV, minV = normalize(dataset1, normalize_style)
# dataset = dataset1
# steepness of sigmoid function
belta = 1
# partition dataset into train set and test set\
if len(dataset) > 30:
# ratio = 0.83
train_data, test_data = splitData(dataset, ratio)
else:
train_data, test_data = splitData(dataset, 1)
test_data = train_data
len_train_data = len(train_data)
len_test_data = len(test_data)
# grid search
# best parameters
validation_ratio = 0.2
len_validation_data = int(len_train_data * validation_ratio)
small_alpha = [1e-12, 1e-14, 1e-20]
# small_alpha = [1e-20]
# small_alpha = np.linspace(1e-15, 0.1, 20)
# small_alpha = [1e-20]
Order_list = list(range(2, 9))
Nc_list = list(range(2, 8))
# alpha_list = np.hstack((small_alpha, np.linspace(0.1, 15, 30)))
alpha_list = small_alpha
# rmse_total = np.zeros(shape=(len(Nc_list), len(Order_list)))
best_Order = -1
best_Nc = -1
best_alpha_inall = np.zeros(shape=(len(Nc_list), len(Order_list)))
best_alpha_scala = -1 # 记录最优(Nc, Order)下最优的alpha
min_nmse = np.inf
min_rmse_inall = np.inf
best_W_learned_inall = None
best_steepness_inall = None
best_predict_inall = np.zeros(shape=len_train_data)
for Oidx, Order in enumerate(Order_list):
for Nidx, Nc in enumerate(Nc_list):
# min_rmse 用于记录每个(Order, Nc)下的最小的rmse(优化alpha )
min_rmse = np.inf
best_alpha = -1
best_W_learned = None
best_steepness = None
best_predict = np.zeros(shape=len_train_data)
# Grid Search for optimizing alpha
for alpha in alpha_list:
max_level = Nc - 1
coffis = wavelet_transform(dataset, max_level)
np.savetxt('coffis.txt', coffis, delimiter=',')
# coffis, maxV_wavelet, minV_wavelet = normalize(coffis, normalize_style)
k = 2 ** max_level
U_train = coffis[:, :len_train_data - k - len_validation_data]
# the ridge regression
tol = 1e-24
from sklearn import linear_model
clf = linear_model.Ridge(alpha=alpha, fit_intercept=False, tol=tol)
# solving Ax = b to obtain x(x is the weight vector corresponding to certain node)
# learned weight matrix
W_learned = np.zeros(shape=(Nc, Nc * Order + 1))
samples_train = {}
for node_solved in range(Nc): # solve each node in turn
samples = create_dataset(U_train, belta, Order, node_solved)
# delete last "Order" rows (all zeros)
samples_train[node_solved] = samples[:-Order, :]
# use ridge regression
clf.fit(samples[:, :-1], samples[:, -1])
W_learned[node_solved, :] = clf.coef_
# end_time = time.time()
# print("solving L2 using %f(s) time" % (end_time - start))
steepness = np.max(np.abs(W_learned), axis=1)
for i in range(Nc):
if steepness[i] > 1:
W_learned[i, :] /= steepness[i]
# print(W_learned)
# predict on training data set
trainPredict = np.zeros(shape=(Nc, len_train_data-k-len_validation_data))
for i in range(Nc):
trainPredict[i, :Order] = U_train[i, :Order]
trainPredict[i, Order:] = predict(samples_train[i], W_learned[i, :], steepness[i], belta)
if plot_flag:
fig1 = plt.figure()
ax1 = fig1.add_subplot(211)
for i in range(Nc):
ax1.plot(U_train[i, :], label=str(i))
ax1.set_xlabel('n')
ax1.set_title('Wavelets of train data')
ax1.legend()
ax2 = fig1.add_subplot(212)
for i in range(Nc):
ax2.plot(trainPredict[i, :])
ax2.set_xlabel('n')
ax2.set_title('Wavelets of predicted train data')
fig1.tight_layout()
# plt.show()
# # re-normalize wavelet from [0,1] into real dimension
# trainPredict = re_normalize(trainPredict, maxV_wavelet, minV_wavelet, normalize_style)
# # reconstruct part
new_trainPredict = wavelet_reconstruct(trainPredict)
new_trainPredict = np.hstack((train_data[:k], new_trainPredict))
# print('Error is %f' % np.linalg.norm(np.array(train_data)[k:] - new_trainPredict, 2))
if plot_flag:
# plot train data series and predicted train data series
fig2 = plt.figure()
ax_2 = fig2.add_subplot(111)
ax_2.plot(train_data, 'ro--', label='the original data')
ax_2.plot(new_trainPredict, 'g+-', label='the predicted data')
ax_2.set_xlabel('Year')
ax_2.set_title('time series(train dataset) by wavelet')
ax_2.legend()
# validation stage for choosing right parameters
U_validation = coffis[:, len_train_data - k - len_validation_data - Order:len_train_data - k]
validationPredict = np.zeros(shape=(Nc, len_validation_data))
samples_validation = {}
for i in range(Nc): # solve each node in turn
samples = create_dataset(U_validation, belta, Order, i)
samples_validation[i] = samples[:-Order, :] # delete the last "Order' rows(all zeros)
# testPredict[i, :Order] = U_test[i, :Order]
validationPredict[i, :] = predict(samples_validation[i], W_learned[i, :], steepness[i], belta)
# validationPredict = re_normalize(validationPredict, maxV_wavelet, minV_wavelet, normalize_style)
new_validationPredict = wavelet_reconstruct(validationPredict)
mse, rmse, nmse = statistics(dataset[len_train_data - len_validation_data:len_train_data], new_validationPredict)
# rmse_total[Nidx, Oidx] = rmse
print("Nc -> %d, Order -> %d, alpha -> %g: rmse -> %f | min_rmse is %f, min_rmse_inall is %f (%d, %d)"
% (Nc, Order, alpha, rmse, min_rmse, min_rmse_inall, best_Nc, best_Order))
# use rmse as performance index
if rmse < min_rmse:
min_rmse = rmse
best_predict[:] = np.hstack((new_trainPredict, new_validationPredict))
best_W_learned = W_learned
best_steepness = steepness
best_alpha = alpha
# 记录当前(Nc, Order)下的最优 alpha
best_alpha_inall[Nidx, Oidx] = best_alpha
# 判断当前的(Nc, Order)下,全局rmse是否减小
if min_rmse < min_rmse_inall:
min_rmse_inall = min_rmse
best_Nc = Nc
best_Order = Order
best_predict_inall = best_predict
best_W_learned_inall = best_W_learned
best_steepness_inall = best_steepness
best_alpha_scala = best_alpha
# print(rmse_total)
if len(dataset) <= 30:
data_predicted = best_predict
data_predicted = re_normalize(data_predicted, maxV, minV, normalize_style)
return data_predicted, rmse, min_nmse, best_Order, best_Nc, best_alpha
else:
# # test data
max_level = best_Nc - 1
coffis = wavelet_transform(dataset, max_level)
# coffis, maxV_wavelet, minV_wavelet = normalize(coffis, normalize_style)
k = 2 ** max_level
U_test = coffis[:, len_train_data-k-best_Order:] # use last Order data point of train dataset
testPredict = np.zeros(shape=(best_Nc, len_test_data))
samples_test = {}
for i in range(best_Nc): # solve each node in turn
samples = create_dataset(U_test, belta, best_Order, i)
samples_test[i] = samples[:-best_Order, :] # delete the last "Order' rows(all zeros)
# testPredict[i, :Order] = U_test[i, :Order]
testPredict[i, :] = predict(samples_test[i], best_W_learned_inall[i, :], best_steepness_inall[i], belta)
if plot_flag:
fig3 = plt.figure()
ax31 = fig3.add_subplot(211)
for i in range(best_Nc):
ax31.plot(U_test[i, :])
ax31.set_xlabel('n')
ax31.set_title('Wavelets of test data')
ax32 = fig3.add_subplot(212)
for i in range(best_Nc):
ax32.plot(testPredict[i, :])
ax32.set_xlabel('n')
ax32.set_title('Wavelets of predicted test data')
fig3.tight_layout()
# re-normalize wavelet from [0,1] into real dimension
# testPredict = re_normalize(testPredict, maxV_wavelet, minV_wavelet, normalize_style)
new_testPredict = wavelet_reconstruct(testPredict)
if plot_flag:
fig4 = plt.figure()
ax41 = fig4.add_subplot(111)
ax41.plot(np.array(test_data), 'ro--', label='the origindal data')
ax41.plot(np.array(new_testPredict), 'g+-', label='the predicted data')
# ax41.set_ylim([0, 1])
ax41.set_xlabel('Year')
ax41.set_title('time series(test dataset) by wavelet')
ax41.legend()
print(steepness)
plt.show()
data_predicted = np.hstack((best_predict_inall, new_testPredict))
data_predicted = re_normalize(data_predicted, maxV, minV, normalize_style)
return data_predicted, best_Order, best_Nc, best_alpha_scala
def analyze_paras_HFCM(dataset1, ratio=0.7):
normalize_style = '-01'
dataset_copy = dataset1.copy()
dataset, maxV, minV = normalize(dataset1, normalize_style)
# dataset = dataset1
# steepness of sigmoid function
belta = 1
# partition dataset into train set and test set\
if len(dataset) > 30:
# ratio = 0.83
train_data, test_data = splitData(dataset, ratio)
else:
train_data, test_data = splitData(dataset, 1)
test_data = train_data
len_train_data = len(train_data)
len_test_data = len(test_data)
# grid search
# best parameters
validation_ratio = 0.2
len_validation_data = int(len_train_data * validation_ratio)
small_alpha = [1e-12, 1e-20, 1e-14, 1e-13]
# small_alpha = np.linspace(1e-15, 0.1, 20)
# small_alpha = [0, 1e-20, 1e-12, 1e-14, 1e-13]
Order_list = list(range(1, 7))
Nc_list = list(range(2, 8))
# alpha_list = np.hstack((small_alpha, np.linspace(1, 8, 15)))
alpha_list = small_alpha
# rmse_total = np.zeros(shape=(len(Nc_list), len(Order_list)))
best_Order = -1
best_Nc = -1
best_alpha_inall = np.zeros(shape=(len(Nc_list), len(Order_list)))
best_alpha_scala = -1 # 记录最优(Nc, Order)下最优的alpha
min_nmse = np.inf
min_rmse_inall = np.inf
best_W_learned_inall = None
best_steepness_inall = None
best_predict_inall = np.zeros(shape=len_train_data)
# 每个(Nc, Order)下最优alpha 时的误差(Validation dataset)
rmse_total = np.zeros(shape=(len(Nc_list), len(Order_list)))
for Oidx, Order in enumerate(Order_list):
for Nidx, Nc in enumerate(Nc_list):
# min_rmse 用于记录每个(Order, Nc)下的最小的rmse(优化alpha )
min_rmse = np.inf
best_alpha = -1
best_W_learned = None
best_steepness = None
best_predict = np.zeros(shape=len_train_data)
# Grid Search for optimizing alpha
for alpha in alpha_list:
max_level = Nc - 1
coffis = wavelet_transform(dataset, max_level)
# coffis, maxV_wavelet, minV_wavelet = normalize(coffis, normalize_style)
k = 2 ** max_level
U_train = coffis[:, :len_train_data - k - len_validation_data]
# the ridge regression
tol = 1e-24
from sklearn import linear_model
clf = linear_model.Ridge(alpha=alpha, fit_intercept=False, tol=tol)
# solving Ax = b to obtain x(x is the weight vector corresponding to certain node)
# learned weight matrix
W_learned = np.zeros(shape=(Nc, Nc * Order + 1))
samples_train = {}
for node_solved in range(Nc): # solve each node in turn
samples = create_dataset(U_train, belta, Order, node_solved)
# delete last "Order" rows (all zeros)
samples_train[node_solved] = samples[:-Order, :]
# use ridge regression
clf.fit(samples[:, :-1], samples[:, -1])
W_learned[node_solved, :] = clf.coef_
# end_time = time.time()
# print("solving L2 using %f(s) time" % (end_time - start))
steepness = np.max(np.abs(W_learned), axis=1)
for i in range(Nc):
if steepness[i] > 1:
W_learned[i, :] /= steepness[i]
# print(W_learned)
# predict on training data set
trainPredict = np.zeros(shape=(Nc, len_train_data - k - len_validation_data))
for i in range(Nc):
trainPredict[i, :Order] = U_train[i, :Order]
trainPredict[i, Order:] = predict(samples_train[i], W_learned[i, :], steepness[i], belta)
# # re-normalize wavelet from [0,1] into real dimension
# trainPredict = re_normalize(trainPredict, maxV_wavelet, minV_wavelet, normalize_style)
# # reconstruct part
new_trainPredict = wavelet_reconstruct(trainPredict)
new_trainPredict = np.hstack((train_data[:k], new_trainPredict))
# print('Error is %f' % np.linalg.norm(np.array(train_data)[k:] - new_trainPredict, 2))
# validation stage for choosing right parameters
U_validation = coffis[:, len_train_data - k - len_validation_data - Order:len_train_data - k]
validationPredict = np.zeros(shape=(Nc, len_validation_data))
samples_validation = {}
for i in range(Nc): # solve each node in turn
samples = create_dataset(U_validation, belta, Order, i)
samples_validation[i] = samples[:-Order, :] # delete the last "Order' rows(all zeros)
# testPredict[i, :Order] = U_test[i, :Order]
validationPredict[i, :] = predict(samples_validation[i], W_learned[i, :], steepness[i], belta)
# validationPredict = re_normalize(validationPredict, maxV_wavelet, minV_wavelet, normalize_style)
new_validationPredict = wavelet_reconstruct(validationPredict)
# print(rmse_total)
if len(dataset) <= 30:
data_predicted = best_predict
data_predicted = re_normalize(data_predicted, maxV, minV, normalize_style)
return data_predicted, rmse, min_nmse, best_Order, best_Nc, best_alpha
else:
# # test data
max_level = Nc - 1
coffis = wavelet_transform(dataset, max_level)
# coffis, maxV_wavelet, minV_wavelet = normalize(coffis, normalize_style)
k = 2 ** max_level
U_test = coffis[:, len_train_data - k - Order:] # use last Order data point of train dataset
testPredict = np.zeros(shape=(Nc, len_test_data))
samples_test = {}
for i in range(Nc): # solve each node in turn
samples = create_dataset(U_test, belta, Order, i)
samples_test[i] = samples[:-Order, :] # delete the last "Order' rows(all zeros)
# testPredict[i, :Order] = U_test[i, :Order]
testPredict[i, :] = predict(samples_test[i], W_learned[i, :],
steepness[i], belta)
# re-normalize wavelet from [0,1] into real dimension
# testPredict = re_normalize(testPredict, maxV_wavelet, minV_wavelet, normalize_style)
new_testPredict = wavelet_reconstruct(testPredict)
# (train, validation, test)
data_predicted = np.hstack((new_trainPredict, new_validationPredict, new_testPredict))
# data_predicted = re_normalize(data_predicted, maxV, minV, normalize_style)
# mse, rmse, nmse = statistics(dataset_copy[len_train_data:], data_predicted[len_train_data:])
# new_validationPredict)
mse, rmse, nmse = statistics(dataset[len_train_data:], data_predicted[len_train_data:])
# mse, rmse, nmse = statistics(dataset[len_train_data - len_validation_data:len_train_data],
# new_validationPredict)
print("Nc -> %d, Order -> %d, alpha -> %g: rmse -> %f | min_rmse is %f, min_rmse_inall is %f(%d, %d)"
% (Nc, Order, alpha, rmse, min_rmse, min_rmse_inall, best_Nc, best_Order))
# use rmse as performance index
if rmse < min_rmse:
min_rmse = rmse
best_predict[:] = np.hstack((new_trainPredict, new_validationPredict))
best_W_learned = W_learned
best_steepness = steepness
best_alpha = alpha
# 记录当前(Nc, Order)下的最优 alpha
best_alpha_inall[Nidx, Oidx] = best_alpha
# 记录当前(Nc, Order)下最优rmse, 用于绘图分析
rmse_total[Nidx, Oidx] = min_rmse
# 判断当前的(Nc, Order)下,全局rmse是否减小
if min_rmse < min_rmse_inall:
min_rmse_inall = min_rmse
best_Nc = Nc
best_Order = Order
best_predict_inall = best_predict
best_W_learned_inall = best_W_learned
best_steepness_inall = best_steepness
best_alpha_scala = best_alpha
df = pd.DataFrame(rmse_total, index=Nc_list, columns=Order_list)
return df
# analyze hyper-parameters on the performance on Wavelet-HFCM
def analyze_parameter():
import seaborn as sns
plt.style.use(['ggplot', 'seaborn-paper'])
# Analyze sunspot and s&p 500 time series
# data set : sunspot
sunspot = pd.read_csv('./datasets/sunspot.csv', delimiter=';').as_matrix()
dataset = sunspot[:-1, 1]
ratio = 0.7674
df1 = analyze_paras_HFCM(dataset, ratio=ratio)
Nc_list = df1.index.values
Order_list = df1.columns.values
sp500_src = "./datasets/sp500.csv"
dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d')
sp500 = pd.read_csv(sp500_src, delimiter=',', parse_dates=[0], date_parser=dateparse).as_matrix()
dataset = np.array(sp500[:, 1], dtype=np.float)
df2 = analyze_paras_HFCM(dataset, ratio=0.6)
# save df1 & df2 to excel
writer = pd.ExcelWriter('output_sunspot_sp500.xlsx')
df1.to_excel(writer, 'df1')
df2.to_excel(writer, 'df2')
writer.save()
# Analyze MG chaos time series
# # data set 4 : MG chaos( even use 10% data as train data)
# import scipy.io as sio
# dataset = sio.loadmat('MG_chaos.mat')['dataset'].flatten()
# # only use data from t=124 : t=1123 (all data previous are not in the same pattern!)
# dataset = dataset[123:1123]
# # time = range(len(dataset))
# # time = sp500[:, 0]
# df3 = analyze_paras_HFCM(dataset, ratio)
# writer = pd.ExcelWriter('output_MG.xlsx')
# df3.to_excel(writer, 'df1')
# writer.save()
# RMSE versus varying level of decomposition
# sunspot + S&P 500
import shutil
import os
if not os.path.exists('./Outcome_for_papers/impact_parameters/varying_Nc'):
os.makedirs('./Outcome_for_papers/impact_parameters/varying_Nc')
if not os.path.exists('./Outcome_for_papers/impact_parameters/varying_Order'):
os.makedirs('./Outcome_for_papers/impact_parameters/varying_Order')
for order in Order_list:
df = pd.DataFrame({r'$N_c$': Nc_list,
'S&P500': df2[order].values,
'Sunspot time series': df1[order].values})
df = pd.melt(df, id_vars=r'$N_c$', var_name="Dataset", value_name='RMSE')
g = sns.catplot(x=r'$N_c$', y='RMSE', hue='Dataset',
hue_order=['Sunspot time series', 'S&P500'], data=df, kind='bar',
legend=False, palette=sns.color_palette(["#34495e", "#95a5a6"]))
# resize figure box to -> put the legend out of the figure
box = g.ax.get_position() # get position of figure
g.ax.set_position([box.x0, box.y0, box.width, box.height * 0.9]) # resize position
# Put a legend to the right side
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.)
# plt.tight_layout()
plt.savefig(
r"./Outcome_for_papers/impact_parameters/varying_Nc/k=%d.pdf" % order)
plt.savefig(
r"./Outcome_for_papers/impact_parameters/varying_Nc/k=%d.tiff" % order)
plt.close()
for Nc in Nc_list:
# / print(len(df_1.loc[Nc, :]))
df = pd.DataFrame({'$k$': Order_list,
'S&P500': df2.loc[Nc, :].values,
'Sunspot time series': df1.loc[Nc, :].values})
df = pd.melt(df, id_vars='$k$', var_name="Dataset", value_name='RMSE')
g = sns.catplot(x='$k$', y='RMSE', hue='Dataset',
hue_order=['Sunspot time series', 'S&P500'], data=df, kind='bar',
legend=False, palette=sns.color_palette(["#34495e", "#95a5a6"]))
# resize figure box to -> put the legend out of the figure
box = g.ax.get_position() # get position of figure
g.ax.set_position([box.x0, box.y0, box.width, box.height * 0.9]) # resize position
# Put a legend to the right side
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3, mode="expand", borderaxespad=0.)
plt.savefig(
r"./Outcome_for_papers/impact_parameters/varying_Order/Nc=%d.pdf" % Nc)
plt.savefig(
r"./Outcome_for_papers/impact_parameters/varying_Order/Nc=%d.tiff" % Nc)
plt.close()
def main():
# load time series data
''' New data sets'''
# dataset 1:monthly-closings-of-the-dowjones.csv #todo: good
# dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m') # %Y-%m-%d
# sunspot = pd.read_csv(r'./datasets/monthly-closings-of-the-dowjones.csv', delimiter=',', parse_dates=[0],
# date_parser=dateparse).as_matrix()
#
# dataset = sunspot[:, 1].astype(np.float)
#
# time = sunspot[:, 0]
# ratio = 0.75
# # dataset 2: monthly-milk-production-pounds-p.csv #todo: good
# dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m') # %Y-%m-%d
# sunspot = pd.read_csv(r'./datasets/monthly-milk-production-pounds-p.csv', delimiter=',', parse_dates=[0],
# date_parser=dateparse).as_matrix()
#
# dataset = sunspot[:, 1].astype(np.float)
# time = sunspot[:, 0]
# ratio = 0.8
# dataset 3: monthly-critical-radio-frequenci #todo: good
# dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m') # %Y-%m-%d
# sunspot = pd.read_csv(r'./datasets/monthly-critical-radio-frequenci.csv', delimiter=',', parse_dates=[0],
# date_parser=dateparse).as_matrix()
# dataset = sunspot[:, 1].astype(np.float)
# time = sunspot[:, 0]
# ratio = 0.75
# # dataset 4: co2-ppm-mauna-loa-19651980.csv #todo: good
dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m') # %Y-%m-%d
sunspot = pd.read_csv(r'./datasets/co2-ppm-mauna-loa-19651980.csv', delimiter=',', parse_dates=[0],
date_parser=dateparse).as_matrix()
dataset = sunspot[:, 1].astype(np.float)
time = sunspot[:, 0]
ratio = 0.85
# dataset 5: monthly-lake-erie-levels-1921-19.csv #todo: good
# dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m') # %Y-%m-%d
# sunspot = pd.read_csv(r'./datasets/monthly-lake-erie-levels-1921-19.csv', delimiter=',', parse_dates=[0],
# date_parser=dateparse).as_matrix()
# dataset = sunspot[:, 1].astype(np.float)
# time = sunspot[:, 0]
# ratio = 0.7674
'''old datasets'''
# data set 1: sunspot
# sunspot = pd.read_csv('./datasets/sunspot.csv', delimiter=';').as_matrix()
# dataset = sunspot[:-1, 1]
# np.savetxt('origin_sunspot.txt', dataset, delimiter=',')
# time = sunspot[:-1, 0]
# ratio = 0.7674
#
#
# # # # data set 2 : MG chaos( even use 10% data as train data)
import scipy.io as sio
dataset = sio.loadmat('./datasets/MG_chaos.mat')['dataset'].flatten()
# only use data from t=124 : t=1123 (all data previous are not in the same pattern!)
dataset = dataset[123:1123]
time = range(len(dataset))
ratio = 0.5
# data set 3 : sp500 index
# sp500_src = "./datasets/sp500.csv"
# dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d')
# sp500 = pd.read_csv(sp500_src, delimiter=',', parse_dates=[0], date_parser=dateparse).as_matrix()
# dataset = np.array(sp500[:, 1], dtype=np.float)
# time = sp500[:, 0]
# ratio = 0.6
# partition dataset into train set and test set
length = len(dataset)
len_train_data = int(length * ratio)
validation_ratio = 0.2
len_validation_data = int(len_train_data * validation_ratio)
len_test_data = length - len_train_data
# perform prediction
data_predicted, best_Order, best_Nc, best_alpha = HFCM_ridge(dataset, ratio)
# Outcomes
# Error of the whole dataset
mse, rmse, nmse = statistics(dataset, data_predicted)
print('*' * 80)
print('The ratio is %f' % ratio)
print('best Order is %d, best Nc is %d, best alpha is %g' % (best_Order, best_Nc, best_alpha))
print('Forecasting on all dataset: MSE|RMSE|NMSE is : |%f |%f |%f|' % (np.power(rmse, 2), rmse, nmse))
# Error of Train dataset
mse, rmse, nmse = statistics(dataset[:len_train_data-len_validation_data], data_predicted[:len_train_data-len_validation_data])
print('Forecasting on train dataset: MSE|RMSE|NMSE is : |%f |%f |%f|' % (np.power(rmse, 2), rmse, nmse))
# Error of Validation dataset
mse, rmse, nmse = statistics(dataset[len_train_data-len_validation_data:len_train_data], data_predicted[len_train_data-len_validation_data:len_train_data])
print('Forecasting on validation dataset: MSE|RMSE|NMSE is : |%f |%f |%f|' % (np.power(rmse, 2), rmse, nmse))
# Error of Test dataset
mse, Test_rmse, nmse = statistics(dataset[len_train_data:], data_predicted[len_train_data:])
print('Forecasting on test dataset: MSE|RMSE|NMSE is : |%f |%f |%f|' % (np.power(Test_rmse, 2), Test_rmse, nmse))
# print length of each subdatasets
print('The whole length is %d' % length)
print('Train dataset length is %d' % (len_train_data - len_validation_data))
print('Validation dataset length is %d' % len_validation_data)
print('Test dataset length is %d' % len_test_data)
# plot time series
import seaborn as sns
plt.style.use(['ggplot', 'seaborn-paper'])
fig4 = plt.figure()
ax41 = fig4.add_subplot(111)
ax41.plot(time, dataset, 'r-', label='the original data')
ax41.plot(time, data_predicted, 'go--', label='the predicted data')
ax41.set_ylabel("Magnitude")
ax41.set_xlabel('Time')
# ax41.set_title('time series prediction ')
# ax41.set_ylim([0.35, 1.4]) # for MG-chaos having a better visualization
ax41.legend()
plt.tight_layout()
plt.show()
def HaarWaveletTransform(x, J):
N = len(x)
C = np.zeros(shape=(J+1, N))
# W: wavelet coefficients
W = np.zeros(shape=(J+1, N))
C[0, :] = x.copy()
for j in range(1, J+1):
for k in range(1, N):
C[j, k] = 1/2 * (C[j-1, k] + C[j-1, k - np.power(2, j-1)])
W[j, k] = C[j-1][k] - C[j, k]
W[0, :] = C[J, :]
return W[:, np.power(2, J):]
def statistics(origin, predicted):
# # compute RMSE
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(origin, predicted)
rmse = np.sqrt(mse)
meanV = np.mean(origin)
dominator = np.linalg.norm(predicted - meanV, 2)
return mse, rmse, mse / np.power(dominator, 2)
if __name__ == '__main__':
# analyze hyper-parameters on the performance of Wavelet-HFCM
analyze_parameter()
# main function
# main()