-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinance2.py
108 lines (89 loc) · 2.95 KB
/
finance2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import bs4 as bs
import datetime as dt
import os
import pandas as pd
from pandas_datareader import data as pdr
from matplotlib import style
import pickle
import numpy as np
import requests
import yfinance as yf
import matplotlib.pyplot as plt
style.use('ggplot')
yf.pdr_override
def save_sp500_tickers():
resp = requests.get('http://en.wikipedia.org/wiki/List_of_S%26P_500_companies')
soup = bs.BeautifulSoup(resp.text, 'lxml')
table = soup.find('table', {'class': 'wikitable sortable'})
tickers = []
for row in table.findAll('tr')[1:]:
ticker = row.findAll('td')[0].text.replace('.', '-')
ticker = ticker[:-1]
tickers.append(ticker)
with open("sp500tickers.pickle", "wb") as f:
pickle.dump(tickers, f)
return tickers
# save_sp500_tickers()
def get_data_from_yahoo(reload_sp500=False):
if reload_sp500:
tickers = save_sp500_tickers()
else:
with open("sp500tickers.pickle", "rb") as f:
tickers = pickle.load(f)
if not os.path.exists('stock_dfs'):
os.makedirs('stock_dfs')
start = dt.datetime(2019, 6, 8)
end = dt.datetime(2020, 6, 22)
for ticker in tickers:
# print(ticker)
if not os.path.exists('stock_dfs/{}.csv'.format(ticker)):
df = pdr.get_data_yahoo(ticker, start, end)
df.reset_index(inplace=True)
df.set_index("Date", inplace=True)
df.to_csv('stock_dfs/{}.csv'.format(ticker))
else:
print('Already have {}'.format(ticker))
def compile_data():
with open("sp500tickers.pickle", "rb") as f:
tickers = pickle.load(f)
main_df = pd.DataFrame()
for count, ticker in enumerate(tickers):
df = pd.read_csv('stock_dfs/{}.csv'.format(ticker))
df.set_index('Date', inplace=True)
df.rename(columns={'Adj Close': ticker}, inplace=True)
df.drop(['Open', 'High', 'Low', 'Close', 'Volume'], 1, inplace=True)
if main_df.empty:
main_df = df
else:
main_df = main_df.join(df, how='outer')
if count % 10 == 0:
print(count)
print(main_df.head())
main_df.to_csv('sp500_joined_closes.csv')
def visualize_data():
df = pd.read_csv('sp500_joined_closes.csv')
# df['AAPL'].plot()
# plt.show()
df_corr = df.corr()
print(df_corr.head())
data = df_corr.values
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
heatmap = ax.pcolor(data, cmap=plt.cm.RdYlGn)
fig.colorbar(heatmap)
ax.set_xticks(np.arange(data.shape[0]) + 0.5, minor=False)
ax.set_yticks(np.arange(data.shape[1]) + 0.5, minor=False)
ax.invert_yaxis()
ax.xaxis.tick_top()
column_labels = df_corr.columns
row_labels = df_corr.index
ax.set_xticklabels(column_labels)
ax.set_yticklabels(row_labels)
plt.xticks(rotation=90)
heatmap.set_clim(-1, 1)
plt.tight_layout()
plt.show()
# save_sp500_tickers()
# get_data_from_yahoo()
# compile_data()
visualize_data()