-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgrid_clustering.py
217 lines (172 loc) · 9.17 KB
/
grid_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.cuda.amp import custom_bwd, custom_fwd
try:
import _gridencoder as _backend
except ImportError:
from .backend import _backend
_gridtype_to_id = {
'hash': 0,
'tiled': 1,
}
class _grid_encode(Function):
@staticmethod
@custom_fwd
def forward(ctx, inputs, embeddings, offsets, per_level_scale, base_resolution, calc_grad_inputs=False, gridtype=0, align_corners=False):
# inputs: [B, D], float in [0, 1]
# embeddings: [sO, C], float
# offsets: [L + 1], int
# RETURN: [B, F], float
inputs = inputs.contiguous()
B, D = inputs.shape # batch size, coord dim
L = offsets.shape[0] - 1 # level
C = embeddings.shape[1] # embedding dim for each level
S = np.log2(per_level_scale) # resolution multiplier at each level, apply log2 for later CUDA exp2f
H = base_resolution # base resolution
# manually handle autocast (only use half precision embeddings, inputs must be float for enough precision)
# if C % 2 != 0, force float, since half for atomicAdd is very slow.
if torch.is_autocast_enabled() and C % 2 == 0:
embeddings = embeddings.to(torch.half)
# L first, optimize cache for cuda kernel, but needs an extra permute later
outputs = torch.empty(L, B, C, device=inputs.device, dtype=embeddings.dtype)
if calc_grad_inputs:
dy_dx = torch.empty(B, L * D * C, device=inputs.device, dtype=embeddings.dtype)
else:
dy_dx = torch.empty(1, device=inputs.device, dtype=embeddings.dtype)
_backend.grid_encode_forward(inputs, embeddings, offsets, outputs, B, D, C, L, S, H, calc_grad_inputs, dy_dx, gridtype, align_corners)
# permute back to [B, L * C]
outputs = outputs.permute(1, 0, 2).reshape(B, L * C)
ctx.save_for_backward(inputs, embeddings, offsets, dy_dx)
ctx.dims = [B, D, C, L, S, H, gridtype]
ctx.calc_grad_inputs = calc_grad_inputs
ctx.align_corners = align_corners
return outputs
@staticmethod
#@once_differentiable
@custom_bwd
def backward(ctx, grad):
inputs, embeddings, offsets, dy_dx = ctx.saved_tensors
B, D, C, L, S, H, gridtype = ctx.dims
calc_grad_inputs = ctx.calc_grad_inputs
align_corners = ctx.align_corners
# grad: [B, L * C] --> [L, B, C]
grad = grad.view(B, L, C).permute(1, 0, 2).contiguous()
grad_embeddings = torch.zeros_like(embeddings)
if calc_grad_inputs:
grad_inputs = torch.zeros_like(inputs, dtype=embeddings.dtype)
else:
grad_inputs = torch.zeros(1, device=inputs.device, dtype=embeddings.dtype)
_backend.grid_encode_backward(grad, inputs, embeddings, offsets, grad_embeddings, B, D, C, L, S, H, calc_grad_inputs, dy_dx, grad_inputs, gridtype, align_corners)
if calc_grad_inputs:
grad_inputs = grad_inputs.to(inputs.dtype)
return grad_inputs, grad_embeddings, None, None, None, None, None, None
else:
return None, grad_embeddings, None, None, None, None, None, None
grid_encode = _grid_encode.apply
class ClusteringLayer(nn.Module):
def __init__(self, n_clusters=4, hidden=2, cluster_centers=None, alpha=1.0):
super(ClusteringLayer, self).__init__()
self.n_clusters = n_clusters
self.alpha = alpha
self.hidden = hidden
if cluster_centers is None:
initial_cluster_centers = torch.zeros(self.n_clusters, self.hidden, dtype=torch.float).cuda()
initial_cluster_centers.data.uniform_(-1e-4, 1e-4)
else:
initial_cluster_centers = cluster_centers
self.cluster_centers = nn.Parameter(initial_cluster_centers)
self.kl_loss = nn.KLDivLoss(reduction='mean')
def forward(self, x):
# x: [N, D]
norm_squared = torch.sum((x.unsqueeze(1) - self.cluster_centers)**2, 2)
numerator = 1.0 / (1.0 + (norm_squared / self.alpha))
power = float(self.alpha + 1) / 2
numerator = numerator ** power
# t_dist = (numerator.t() / torch.sum(numerator, 1)).t() #soft assignment using t-distribution
t_dist = numerator / numerator.sum(dim=1, keepdim=True)
return t_dist
def clustering_loss(self, x):
t_dist = self(x)
target_dist = (t_dist ** 2) / t_dist.sum(0)
target_dist = target_dist / target_dist.sum(dim=1, keepdim=True)
target_dist = target_dist.detach()
cl_loss = self.kl_loss(t_dist.log(), target_dist)
return cl_loss
class GridEncoder_clustering(nn.Module):
def __init__(self, input_dim=3, num_levels=4, level_dim=2, per_level_scale=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=None, gridtype='hash', align_corners=False):
super().__init__()
# the finest resolution desired at the last level, if provided, overridee per_level_scale
if desired_resolution is not None:
per_level_scale = np.exp2(np.log2(desired_resolution / base_resolution) / (num_levels - 1))
self.input_dim = input_dim # coord dims, 2 or 3
self.num_levels = num_levels # num levels, each level multiply resolution by 2
self.level_dim = level_dim # encode channels per level
self.per_level_scale = per_level_scale # multiply resolution by this scale at each level.
self.log2_hashmap_size = log2_hashmap_size
self.base_resolution = base_resolution
self.output_dim = num_levels * level_dim
self.gridtype = gridtype
self.gridtype_id = _gridtype_to_id[gridtype] # "tiled" or "hash"
self.align_corners = align_corners
self.cluster_layers = nn.ModuleList()
# allocate parameters
offsets = []
offset = 0
self.max_params = 2 ** log2_hashmap_size
for i in range(num_levels):
resolution = int(np.ceil(base_resolution * per_level_scale ** i))
params_in_level = min(self.max_params, (resolution if align_corners else resolution + 1) ** input_dim) # limit max number
params_in_level = int(np.ceil(params_in_level / 8) * 8) # make divisible
offsets.append(offset)
offset += params_in_level
self.cluster_layers.append(ClusteringLayer())
offsets.append(offset)
offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
self.register_buffer('offsets', offsets)
self.n_params = offsets[-1] * level_dim
# parameters
self.embeddings = nn.Parameter(torch.empty(offset, level_dim))
self.reset_parameters()
# KL
self.kl_loss = nn.KLDivLoss(reduction='mean')
def reset_parameters(self, std=1e-4):
self.embeddings.data.uniform_(-std, std)
def __repr__(self):
return f"GridEncoder: input_dim={self.input_dim} num_levels={self.num_levels} level_dim={self.level_dim} resolution={self.base_resolution} -> {int(round(self.base_resolution * self.per_level_scale ** (self.num_levels - 1)))} per_level_scale={self.per_level_scale:.4f} params={tuple(self.embeddings.shape)} gridtype={self.gridtype} align_corners={self.align_corners}"
def forward(self, inputs, bound=1):
# inputs: [..., input_dim], normalized real world positions in [-bound, bound]
# return: [..., num_levels * level_dim]
inputs = (inputs + bound) / (2 * bound) # map to [0, 1]
#print('inputs', inputs.shape, inputs.dtype, inputs.min().item(), inputs.max().item())
prefix_shape = list(inputs.shape[:-1])
inputs = inputs.view(-1, self.input_dim)
outputs = grid_encode(inputs, self.embeddings, self.offsets, self.per_level_scale, self.base_resolution, inputs.requires_grad, self.gridtype_id, self.align_corners)
outputs = outputs.view(prefix_shape + [self.output_dim])
#print('outputs', outputs.shape, outputs.dtype, outputs.min().item(), outputs.max().item())
return outputs
def clustering_loss(self, pick_level=True):
cl_loss = 0.
offsets = torch.cat([self.offsets, self.embeddings.shape[0] * torch.ones_like(self.offsets[:1])])
if pick_level:
levels = np.random.choice(np.arange(self.num_levels), [1])
else:
levels = np.arange(self.num_levels)
for i in levels:
embeddings = self.embeddings[offsets[i]: offsets[i+1]]
t_dist = self.cluster_layers[i](embeddings)
target_dist = (t_dist ** 2) / t_dist.sum(0)
target_dist = target_dist / target_dist.sum(dim=1, keepdim=True)
target_dist = target_dist.detach()
cl_loss = cl_loss + self.kl_loss(t_dist.log(), target_dist)
return cl_loss
def visualize_embeddings(self):
import matplotlib.pyplot as plt
offsets = torch.cat([self.offsets, self.embeddings.shape[0] * torch.ones_like(self.offsets[:1])])
for i in range(self.num_levels):
embeddings = self.embeddings[offsets[i]: offsets[i+1]].detach().cpu().numpy()
print('Level: ', i)
plt.scatter(embeddings[:, 0], embeddings[:, 1])
plt.show()