-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathllama_evaluator.py
204 lines (187 loc) · 8.1 KB
/
llama_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# This code is modified from C-Eval Project: https://github.com/SJTU-LIT/ceval
import os
import re
from tqdm import tqdm
import random
import numpy as np
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
from evaluator import Evaluator
class Llama_Evaluator(Evaluator):
def __init__(self, choices, k, model_path, device, temperature=0.2):
super(Llama_Evaluator, self).__init__(choices, model_path, k)
load_type = torch.float16
self.model_path = model_path
self.device = device
self.tokenizer = LlamaTokenizer.from_pretrained(model_path)
self.model = LlamaForCausalLM.from_pretrained(
model_path,
load_in_8bit=False,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto')
self.generation_config = dict(
temperature=temperature,
top_k=40,
top_p=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.1,
max_new_tokens=20
)
self.sA_id = self.tokenizer.encode("A", add_special_tokens=False)[0]
self.sB_id = self.tokenizer.encode("B", add_special_tokens=False)[0]
self.sC_id = self.tokenizer.encode("C", add_special_tokens=False)[0]
self.sD_id = self.tokenizer.encode("D", add_special_tokens=False)[0]
self.A_id = self.tokenizer.encode(":A")[-1]
self.B_id = self.tokenizer.encode(":B")[-1]
self.C_id = self.tokenizer.encode(":C")[-1]
self.D_id = self.tokenizer.encode(":D")[-1]
def eval_subject(self, subject_name,
test_df,
dev_df=None,
few_shot=False,
cot=False,
save_result_dir=None,
with_prompt=False,
constrained_decoding=False,
do_test=False):
all_answers = {}
if constrained_decoding is True:
self.generation_config['output_scores'] = True
self.generation_config['return_dict_in_generate'] = True
self.generation_config['max_new_tokens'] = 1
self.generation_config['top_p'] = 1.0
self.generation_config['top_k'] = 0
correct_num = 0
if save_result_dir:
result = []
score = []
if few_shot:
history = self.generate_few_shot_prompt(subject_name, dev_df, cot=cot)
else:
history = ''
answers = ['NA'] * len(test_df) if do_test is True else list(test_df['answer'])
for row_index, row in tqdm(test_df.iterrows(), total=len(test_df)):
question = self.format_example(row, include_answer=False, cot=cot,with_prompt=with_prompt)
instruction = history + question
if with_prompt:
prompt_template = (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response: ")
instruction = prompt_template.format_map({'instruction': instruction,'subject':subject_name})
inputs = self.tokenizer(instruction, return_tensors="pt")
generation_output = self.model.generate(
input_ids = inputs["input_ids"].to(self.device),
attention_mask = inputs['attention_mask'].to(self.device),
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**self.generation_config
)
batch_size, length = inputs.input_ids.shape
if constrained_decoding is True:
logits = generation_output.scores[0][0]
logits = logits.float().cpu().detach()
choices1_logits = logits[[self.sA_id,self.sB_id,self.sC_id,self.sD_id]]
choices2_logits = logits[[self.A_id,self.B_id,self.C_id,self.D_id]]
choicesAll_logits = (choices1_logits + choices2_logits).numpy()
assert not (np.any(np.isinf(choicesAll_logits)) or np.any(np.isnan(choicesAll_logits)))
ans = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(choicesAll_logits)]
response = self.tokenizer.decode([logits.argmax(-1).item()])
else:
response = self.tokenizer.decode(generation_output[0, length:], skip_special_tokens=True)
ans, direct_extract = self.extract_answer(row, response)
if ans == answers[row_index]:
correct_num += 1
correct = 1
else:
correct = 0
print(f"\n=======begin {str(row_index)}=======")
print("question: ", question)
print("response: ", response)
print("ans: ", ans)
print("ground truth: ", answers[row_index], "\n")
if save_result_dir:
result.append(response)
score.append(correct)
print(f"=======end {str(row_index)}=======")
all_answers[str(row_index)] = ans
correct_ratio = 100*correct_num/len(answers)
if save_result_dir:
test_df['model_output'] = result
test_df['correctness'] = score
test_df.to_csv(os.path.join(save_result_dir, f'{subject_name}_test.csv'))
return correct_ratio, all_answers
def format_example(self, line, include_answer=True, cot=False, with_prompt=False):
example = line['question']
for choice in self.choices:
example += f'\n{choice}. {line[f"{choice}"]}'
if include_answer:
if cot:
example += "\n答案:让我们一步一步思考,\n" + \
line["explanation"] + f"\n所以答案是{line['answer']}。\n\n"
else:
example += '\n答案:' + line["answer"] + '\n\n'
else:
if with_prompt is False:
if cot:
example += "\n答案:让我们一步一步思考,\n1."
else:
example += '\n答案:'
else:
if cot:
example += "\n答案是什么?让我们一步一步思考,\n1."
else:
example += '\n答案是什么? '
return example
def generate_few_shot_prompt(self, subject, dev_df, cot=False):
prompt = f"以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n"
k = self.k
if self.k == -1:
k = dev_df.shape[0]
for i in range(k):
prompt += self.format_example(
dev_df.iloc[i, :],
include_answer=True,
cot=cot
)
return prompt
def extract_answer(self, line, gen_ans):
m = re.findall(r'所以答案是(.+?)。', gen_ans, re.M)
if len(m) > 0 and m[-1] in self.choices:
return m[-1], True
answer_patterns = [
r'([ABCD])是正确的',
r'选项([ABCD])正确',
r'答案为([ABCD])',
r'答案是([ABCD])',
r'答案([ABCD])',
r'选择([ABCD])',
r'答案:([ABCD])',
r'选择答案([ABCD])'
]
# RE extraction
for answer_pattern in answer_patterns:
m = re.search(answer_pattern, gen_ans, re.M)
if m:
answer = m.group(1)
return answer, False
# only containing one choice-character
m = re.findall(r'[ABCD]', gen_ans, re.M)
if len(m) >= 1:
answer = m[0]
return answer, False
# only containing one choice-context
choices_dict = {}
pattern = ""
for c in self.choices:
choices_dict[str(line[f'{c}'])] = c
pattern += re.escape(str(line[f'{c}']))+"|"
pattern = pattern[:-1]
m = re.findall(pattern, gen_ans, re.M)
print("w/ escape:",repr(pattern),gen_ans,(len(m)>=1))
if len(m) >= 1:
answer = choices_dict[m[0]]
return answer, False
return random.choice('ABCD'), False