-
-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy path_lists.dm
922 lines (809 loc) · 28.5 KB
/
_lists.dm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
/*
* Holds procs to help with list operations
* Contains groups:
* Misc
* Sorting
*/
/*
* Misc
*/
/*
* ## Lazylists
*
* * What is a lazylist?
*
* True to its name a lazylist is a lazy instantiated list.
* It is a list that is only created when necessary (when it has elements) and is null when empty.
*
* * Why use a lazylist?
*
* Lazylists save memory - an empty list that is never used takes up more memory than just `null`.
*
* * When to use a lazylist?
*
* Lazylists are best used on hot types when making lists that are not always used.
*
* For example, if you were adding a list to all atoms that tracks the names of people who touched it,
* you would want to use a lazylist because most atoms will never be touched by anyone.
*
* * How do I use a lazylist?
*
* A lazylist is just a list you defined as `null` rather than `list()`.
* Then, you use the LAZY* macros to interact with it, which are essentially null-safe ways to interact with a list.
*
* Note that you probably should not be using these macros if your list is not a lazylist.
* This will obfuscate the code and make it a bit harder to read and debug.
*
* Generally speaking you shouldn't be checking if your lazylist is `null` yourself, the macros will do that for you.
* Remember that LAZYLEN (and by extension, length) will return 0 if the list is null.
*/
// Generic listoflist safe add and removal macros:
///If value is a list, wrap it in a list so it can be used with list add/remove operations
#define LIST_VALUE_WRAP_LISTS(value) (islist(value) ? list(value) : value)
///Add an untyped item to a list, taking care to handle list items by wrapping them in a list to remove the footgun
#define UNTYPED_LIST_ADD(list, item) (list += LIST_VALUE_WRAP_LISTS(item))
///Remove an untyped item to a list, taking care to handle list items by wrapping them in a list to remove the footgun
#define UNTYPED_LIST_REMOVE(list, item) (list -= LIST_VALUE_WRAP_LISTS(item))
///Initialize the lazylist
#define LAZYINITLIST(L) if (!L) { L = list(); }
///If the provided list is empty, set it to null
#define UNSETEMPTY(L) if (L && !length(L)) L = null
///If the provided key -> list is empty, remove it from the list
#define ASSOC_UNSETEMPTY(L, K) if (!length(L[K])) L -= K;
///Like LAZYCOPY - copies an input list if the list has entries, If it doesn't the assigned list is nulled
#define LAZYLISTDUPLICATE(L) (L ? L.Copy() : null )
///Remove an item from the list, set the list to null if empty
#define LAZYREMOVE(L, I) if(L) { L -= I; if(!length(L)) { L = null; } }
///Add an item to the list, if the list is null it will initialize it
#define LAZYADD(L, I) if(!L) { L = list(); } L += I;
///Add an item to the list if not already present, if the list is null it will initialize it
#define LAZYOR(L, I) if(!L) { L = list(); } L |= I;
///Returns the key of the submitted item in the list
#define LAZYFIND(L, V) (L ? L.Find(V) : 0)
///returns L[I] if L exists and I is a valid index of L, runtimes if L is not a list
#define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= length(L) ? L[I] : null) : L[I]) : null)
///Sets the item K to the value V, if the list is null it will initialize it
#define LAZYSET(L, K, V) if(!L) { L = list(); } L[K] = V;
///Sets the length of a lazylist
#define LAZYSETLEN(L, V) if (!L) { L = list(); } L.len = V;
///Returns the length of the list
#define LAZYLEN(L) length(L)
///Sets a list to null
#define LAZYNULL(L) L = null
///Accesses an associative list, returns null if nothing is found
#define LAZYACCESSASSOC(L, I, K) L ? L[I] ? L[I][K] ? L[I][K] : null : null : null
///This is used to add onto lazy assoc list when the value you're adding is a /list/. This one has extra safety over lazyaddassoc because the value could be null (and thus cant be used to += objects)
#define LAZYADDASSOCLIST(L, K, V) if(!L) { L = list(); } L[K] += list(V);
///Qdel every item in the list before setting the list to null
#define QDEL_LAZYLIST(L) for(var/I in L) qdel(I); L = null;
//These methods don't null the list
///Use LAZYLISTDUPLICATE instead if you want it to null with no entries
#define LAZYCOPY(L) (L ? L.Copy() : list() )
/// Consider LAZYNULL instead
#define LAZYCLEARLIST(L) if(L) L.Cut()
///Returns the list if it's actually a valid list, otherwise will initialize it
#define SANITIZE_LIST(L) ( islist(L) ? L : list() )
#define reverseList(L) reverseRange(L.Copy())
/// Performs an insertion on the given lazy list with the given key and value. If the value already exists, a new one will not be made.
#define LAZYORASSOCLIST(lazy_list, key, value) \
LAZYINITLIST(lazy_list); \
LAZYINITLIST(lazy_list[key]); \
lazy_list[key] |= value;
///Adds to the item K the value V, if the list is null it will initialize it
#define LAZYADDASSOC(L, K, V) if(!L) { L = list(); } L[K] += V;
///Removes the value V from the item K, if the item K is empty will remove it from the list, if the list is empty will set the list to null
#define LAZYREMOVEASSOC(L, K, V) if(L) { if(L[K]) { L[K] -= V; if(!length(L[K])) L -= K; } if(!length(L)) L = null; }
///Ensures the length of a list is at least I, prefilling it with V if needed. if V is a proc call, it is repeated for each new index so that list() can just make a new list for each item.
#define LISTASSERTLEN(L, I, V...) \
if (length(L) < I) { \
var/_OLD_LENGTH = length(L); \
L.len = I; \
/* Convert the optional argument to a if check */ \
for (var/_USELESS_VAR in list(V)) { \
for (var/_INDEX_TO_ASSIGN_TO in _OLD_LENGTH+1 to I) { \
L[_INDEX_TO_ASSIGN_TO] = V; \
} \
} \
}
/// Passed into BINARY_INSERT to compare keys
#define COMPARE_KEY __BIN_LIST[__BIN_MID]
/// Passed into BINARY_INSERT to compare values
#define COMPARE_VALUE __BIN_LIST[__BIN_LIST[__BIN_MID]]
/****
* Binary search sorted insert
* INPUT: Object to be inserted
* LIST: List to insert object into
* TYPECONT: The typepath of the contents of the list
* COMPARE: The object to compare against, usualy the same as INPUT
* COMPARISON: The variable on the objects to compare
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
var ##TYPECONT/__BIN_ITEM;\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(__BIN_ITEM.##COMPARISON <= COMPARE.##COMPARISON) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = __BIN_ITEM.##COMPARISON > COMPARE.##COMPARISON ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
/**
* Custom binary search sorted insert utilising comparison procs instead of vars.
* INPUT: Object to be inserted
* LIST: List to insert object into
* TYPECONT: The typepath of the contents of the list
* COMPARE: The object to compare against, usualy the same as INPUT
* COMPARISON: The plaintext name of a proc on INPUT that takes a single argument to accept a single element from LIST and returns a positive, negative or zero number to perform a comparison.
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT_PROC_COMPARE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
var ##TYPECONT/__BIN_ITEM;\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(__BIN_ITEM.##COMPARISON(COMPARE) <= 0) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = __BIN_ITEM.##COMPARISON(COMPARE) > 0 ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
#define SORT_FIRST_INDEX(list) (list[1])
#define SORT_COMPARE_DIRECTLY(thing) (thing)
#define SORT_VAR_NO_TYPE(varname) var/varname
/****
* Even more custom binary search sorted insert, using defines instead of vars
* INPUT: Item to be inserted
* LIST: List to insert INPUT into
* TYPECONT: A define setting the var to the typepath of the contents of the list
* COMPARE: The item to compare against, usualy the same as INPUT
* COMPARISON: A define that takes an item to compare as input, and returns their comparable value
* COMPTYPE: How should the list be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT_DEFINE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
##TYPECONT(__BIN_ITEM);\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(##COMPARISON(__BIN_ITEM) <= ##COMPARISON(COMPARE)) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = ##COMPARISON(__BIN_ITEM) > ##COMPARISON(COMPARE) ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
/// Returns a list in plain english as a string
/proc/english_list(list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
var/total = input.len
if (!total)
return "[nothing_text]"
else if (total == 1)
return "[input[1]]"
else if (total == 2)
return "[input[1]][and_text][input[2]]"
else
var/output = ""
var/index = 1
while (index < total)
if (index == total - 1)
comma_text = final_comma_text
output += "[input[index]][comma_text]"
index++
return "[output][and_text][input[index]]"
/// Returns list element or null. Should prevent "index out of bounds" error.
/proc/listgetindex(list/L, index)
if(LAZYLEN(L))
if(isnum(index) && ISINTEGER(index))
if(ISINRANGE(index,1,L.len))
return L[index]
else if(index in L)
return L[index]
return
/// Return either pick(list) or null if list is not of type /list or is empty
/proc/safepick(list/L)
if(LAZYLEN(L))
return pick(L)
/// Checks if the list is empty
/proc/isemptylist(list/L)
if(!L.len)
return TRUE
return FALSE
/// Checks for specific types in a list
/proc/is_type_in_list(atom/A, list/L)
if(!LAZYLEN(L) || !A)
return FALSE
for(var/type in L)
if(istype(A, type))
return TRUE
return FALSE
/// Checks for specific types in specifically structured (Assoc "type" = TRUE) lists ('typecaches')
#define is_type_in_typecache(A, L) (A && length(L) && L[(ispath(A) ? A : A:type)])
/// Checks for a string in a list
/proc/is_string_in_list(string, list/L)
if(!LAZYLEN(L) || !string)
return
for(var/V in L)
if(string == V)
return TRUE
return
/// Removes a string from a list
/proc/remove_strings_from_list(string, list/L)
if(!LAZYLEN(L) || !string)
return
for(var/V in L)
if(V == string)
L -= V //No return here so that it removes all strings of that type
return
/// returns a new list with only atoms that are in typecache L
/proc/typecache_filter_list(list/atoms, list/typecache)
RETURN_TYPE(/list)
. = list()
for(var/thing in atoms)
var/atom/A = thing
if (typecache[A.type])
. += A
/// returns a new list with only atoms that are not in typecache L
/proc/typecache_filter_list_reverse(list/atoms, list/typecache)
RETURN_TYPE(/list)
. = list()
for(var/thing in atoms)
var/atom/A = thing
if(!typecache[A.type])
. += A
/proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude)
. = list()
for(var/thing in atoms)
var/atom/A = thing
if(typecache_include[A.type] && !typecache_exclude[A.type])
. += A
/// Like typesof() or subtypesof(), but returns a typecache instead of a list
/proc/typecacheof(path, ignore_root_path, only_root_path = FALSE)
if(ispath(path))
var/list/types = list()
if(only_root_path)
types = list(path)
else
types = ignore_root_path ? subtypesof(path) : typesof(path)
var/list/L = list()
for(var/T in types)
L[T] = TRUE
return L
else if(islist(path))
var/list/pathlist = path
var/list/L = list()
if(ignore_root_path)
for(var/P in pathlist)
for(var/T in subtypesof(P))
L[T] = TRUE
else
for(var/P in pathlist)
if(only_root_path)
L[P] = TRUE
else
for(var/T in typesof(P))
L[T] = TRUE
return L
/// Empties the list by setting the length to 0. Hopefully the elements get garbage collected
/proc/clearlist(list/list)
if(istype(list))
list.len = 0
return
//Removes any null entries from the list
//Returns TRUE if the list had nulls, FALSE otherwise
/proc/listclearnulls(list/L)
return (L.RemoveAll(null) > 0)
/*
* Returns list containing all the entries from first list that are not present in second.
* If skiprep = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/difflist(list/first, list/second, skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
for(var/e in first)
if(!(e in result) && !(e in second))
result += e
else
result = first - second
return result
/*
* Returns list containing entries that are in either list but not both.
* If skipref = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/uniquemergelist(list/first, list/second, skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
result = difflist(first, second, skiprep)+difflist(second, first, skiprep)
else
result = first ^ second
return result
//Picks a random element from a list based on a weighting system:
//1. Adds up the total of weights for each element
//2. Gets a number between 1 and that total
//3. For each element in the list, subtracts its weighting from that number
//4. If that makes the number 0 or less, return that element.
/proc/pickweight(list/L)
var/total = 0
var/item
for (item in L)
if (!L[item])
L[item] = 1
total += L[item]
total *= rand() // Yogs -- Allows for noninteger weights
for (item in L)
total -=L [item]
if (total <= 0)
return item
return null
/proc/pickweightAllowZero(list/L) //The original pickweight proc will sometimes pick entries with zero weight. I'm not sure if changing the original will break anything, so I left it be.
var/total = 0
var/item
for (item in L)
if (L[item] <= 0)//edited to also allow negatives
continue //edited to not modify the input list
total += L[item]
total = rand(0, total)
for (item in L)
if (L[item] <= 0) //edited to skip all numbers not actually added to the total
continue
total -= L[item]
if (total <= 0 && L[item])
return item
return null
/**
* Given a list, return a copy where values without defined weights are given weight 1.
* For example, fill_with_ones(list(A, B=2, C)) = list(A=1, B=2, C=1)
* Useful for weighted random choices (loot tables, syllables in languages, etc.)
*/
/proc/fill_with_ones(list/list_to_pad)
if (!islist(list_to_pad))
return list_to_pad
var/list/final_list = list()
for (var/key in list_to_pad)
if (list_to_pad[key])
final_list[key] = list_to_pad[key]
else
final_list[key] = 1
return final_list
/// Takes a weighted list (see above) and expands it into raw entries
/// This eats more memory, but saves time when actually picking from it
/proc/expand_weights(list/list_to_pick)
if(!length(list_to_pick))
return list()
var/list/values = list()
for(var/item in list_to_pick)
var/value = list_to_pick[item]
if(!value)
continue
values += value
var/gcf = greatest_common_factor(values)
var/list/output = list()
for(var/item in list_to_pick)
var/value = list_to_pick[item]
if(!value)
continue
for(var/i in 1 to value / gcf)
output += item
return output
/// Takes a list of numbers as input, returns the highest value that is cleanly divides them all
/// Note: this implementation is expensive as heck for large numbers, I only use it because most of my usecase
/// Is < 10 ints
/proc/greatest_common_factor(list/values)
//Old implementation of this used var/smallest = min(argslist(values)), BUT this doesnt work for large lists! causing byond to spiral down into exception hell hole, THIS works!
var/smallest = INFINITY
for(var/entry in values)
if(entry < smallest)
smallest = entry
for(var/i in smallest to 1 step -1)
var/safe = TRUE
for(var/entry in values)
if(entry % i != 0)
safe = FALSE
break
if(safe)
return i
/// Pick a random element from the list and remove it from the list.
/proc/pick_n_take(list/L)
RETURN_TYPE(L[_].type)
if(L.len)
var/picked = rand(1,L.len)
. = L[picked]
L.Cut(picked,picked+1) //Cut is far more efficient that Remove()
/// Pick a random element from the list and remove it from the list.
/proc/pick_n_take_weighted(list/list_to_pick)
if(length(list_to_pick))
var/picked = pick_weight(list_to_pick)
list_to_pick -= picked
return picked
/// Returns the top(last) element from the list and removes it from the list (typical stack function)
/proc/pop(list/L)
if(L.len)
. = L[L.len]
L.len--
/// Returns the bottom(first) element from the list and removes it from the list (typical stack function)
/proc/popleft(list/L)
if(L.len)
. = L[1]
L.Cut(1,2)
/proc/sorted_insert(list/L, thing, comparator)
var/pos = L.len
while(pos > 0 && call(comparator)(thing, L[pos]) > 0)
pos--
L.Insert(pos+1, thing)
/// Returns the next item in a list
/proc/next_list_item(item, list/L)
var/i
i = L.Find(item)
if(i == L.len)
i = 1
else
i++
return L[i]
/// Returns the previous item in a list
/proc/previous_list_item(item, list/L)
var/i
i = L.Find(item)
if(i == 1)
i = L.len
else
i--
return L[i]
/// Randomize: Return the list in a random order
/proc/shuffle(list/L)
if(!L)
return
L = L.Copy()
for(var/i=1, i<L.len, ++i)
L.Swap(i,rand(i,L.len))
return L
/// Same as shuffle, but returns nothing and acts on list in place
/proc/shuffle_inplace(list/L)
if(!L)
return
for(var/i=1, i<L.len, ++i)
L.Swap(i,rand(i,L.len))
/// Returns a list without duplicate entrys
/proc/uniqueList(list/L)
. = list()
for(var/i in L)
. |= i
//same, but returns nothing and acts on list in place (also handles associated values properly)
/proc/uniqueList_inplace(list/L)
var/temp = L.Copy()
L.len = 0
for(var/key in temp)
if (isnum(key))
L |= key
else
L[key] = temp[key]
/// Sort a list by CKEY
/proc/sortKey(list/L, order=1)
return sortTim(L, order >= 0 ? /proc/cmp_ckey_asc : /proc/cmp_ckey_dsc)
/// Sort datum records in a list
/proc/sortRecord(list/L, field = "name", order = 1)
GLOB.cmp_field = field
return sortTim(L, order >= 0 ? /proc/cmp_records_asc : /proc/cmp_records_dsc)
//any value in a list
/proc/sortList(list/L, cmp=/proc/cmp_text_asc)
return sortTim(L.Copy(), cmp)
//uses sortList() but uses the var's name specifically. This should probably be using mergeAtom() instead
/proc/sortNames(list/L, order=1)
return sortTim(L, order >= 0 ? /proc/cmp_name_asc : /proc/cmp_name_dsc)
/proc/sortUsernames(list/L, order=1)
return sortTim(L, order >= 0 ? /proc/cmp_username_asc : /proc/cmp_username_dsc)
///Converts a bitfield to a list of numbers (or words if a wordlist is provided)
/proc/bitfield_to_list(bitfield = 0, list/wordlist)
var/list/return_list = list()
if(islist(wordlist))
var/max = min(wordlist.len, 24)
var/bit = 1
for(var/i in 1 to max)
if(bitfield & bit)
return_list += wordlist[i]
bit = bit << 1
else
for(var/bit_number = 0 to 23)
var/bit = 1 << bit_number
if(bitfield & bit)
return_list += bit
return return_list
/// Returns the key based on the index
#define KEYBYINDEX(L, index) (((index <= length(L)) && (index > 0)) ? L[index] : null)
/proc/count_by_type(list/L, type)
var/i = 0
for(var/T in L)
if(istype(T, type))
i++
return i
/// Find a datum record from a list
/proc/find_record(field, value, list/L)
for(var/datum/data/record/R in L)
if(R.fields[field] == value)
return R
return FALSE
//Move a single element from position fromIndex within a list, to position toIndex
//All elements in the range [1,toIndex) before the move will be before the pivot afterwards
//All elements in the range [toIndex, L.len+1) before the move will be after the pivot afterwards
//In other words, it's as if the range [fromIndex,toIndex) have been rotated using a <<< operation common to other languages.
//fromIndex and toIndex must be in the range [1,L.len+1]
//This will preserve associations ~Carnie
/proc/moveElement(list/L, fromIndex, toIndex)
if(fromIndex == toIndex || fromIndex+1 == toIndex) //no need to move
return
if(fromIndex > toIndex)
++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one
L.Insert(toIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(fromIndex, fromIndex+1)
//Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex)
//Same as moveElement but for ranges of elements
//This will preserve associations ~Carnie
/proc/moveRange(list/L, fromIndex, toIndex, len=1)
var/distance = abs(toIndex - fromIndex)
if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements
if(fromIndex <= toIndex)
return //no need to move
fromIndex += len //we want to shift left instead of right
for(var/i=0, i<distance, ++i)
L.Insert(fromIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(toIndex, toIndex+1)
else
if(fromIndex > toIndex)
fromIndex += len
for(var/i=0, i<len, ++i)
L.Insert(toIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(fromIndex, fromIndex+1)
//Move elements from [fromIndex, fromIndex+len) to [toIndex, toIndex+len)
//Move any elements being overwritten by the move to the now-empty elements, preserving order
//Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie
/proc/swapRange(list/L, fromIndex, toIndex, len=1)
var/distance = abs(toIndex - fromIndex)
if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements
if(fromIndex < toIndex)
toIndex += len
else
fromIndex += len
for(var/i=0, i<distance, ++i)
L.Insert(fromIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(toIndex, toIndex+1)
else
if(toIndex > fromIndex)
var/a = toIndex
toIndex = fromIndex
fromIndex = a
for(var/i=0, i<len, ++i)
L.Swap(fromIndex++, toIndex++)
//replaces reverseList ~Carnie
/proc/reverseRange(list/L, start=1, end=0)
if(L.len)
start = start % L.len
end = end % (L.len+1)
if(start <= 0)
start += L.len
if(end <= 0)
end += L.len + 1
--end
while(start < end)
L.Swap(start++,end--)
return L
// /tg/ compat
#define reverse_range(args...) reverseRange(args)
//return first thing in L which has var/varname == value
//this is typecaste as list/L, but you could actually feed it an atom instead.
//completely safe to use
/proc/getElementByVar(list/L, varname, value)
varname = "[varname]"
for(var/datum/D in L)
if(D.vars.Find(varname))
if(D.vars[varname] == value)
return D
/// remove all nulls from a list
/proc/removeNullsFromList(list/L)
while(L.Remove(null))
continue
return L
//Copies a list, and all lists inside it recusively
//Does not copy any other reference type
/proc/deepCopyList(list/l)
if(!islist(l))
return l
. = l.Copy()
for(var/i = 1 to l.len)
var/key = .[i]
if(isnum(key))
// numbers cannot ever be associative keys
continue
var/value = .[key]
if(islist(value))
value = deepCopyList(value)
.[key] = value
if(islist(key))
key = deepCopyList(key)
.[i] = key
.[key] = value
//takes an input_key, as text, and the list of keys already used, outputting a replacement key in the format of "[input_key] ([number_of_duplicates])" if it finds a duplicate
//use this for lists of things that might have the same name, like mobs or objects, that you plan on giving to a player as input
/proc/avoid_assoc_duplicate_keys(input_key, list/used_key_list)
if(!input_key || !istype(used_key_list))
return
if(used_key_list[input_key])
used_key_list[input_key]++
input_key = "[input_key] ([used_key_list[input_key]])"
else
used_key_list[input_key] = 1
return input_key
//Flattens a keyed list into a list of it's contents
/proc/flatten_list(list/key_list)
if(!islist(key_list))
return null
. = list()
for(var/key in key_list)
. |= key_list[key]
/proc/make_associative(list/flat_list)
. = list()
for(var/thing in flat_list)
.[thing] = TRUE
//Picks from the list, with some safeties, and returns the "default" arg if it fails
#define DEFAULTPICK(L, default) ((islist(L) && length(L)) ? pick(L) : default)
/* Definining a counter as a series of key -> numeric value entries
* All these procs modify in place.
*/
/proc/counterlist_scale(list/L, scalar)
var/list/out = list()
for(var/key in L)
out[key] = L[key] * scalar
. = out
/proc/counterlist_sum(list/L)
. = 0
for(var/key in L)
. += L[key]
/proc/counterlist_normalise(list/L)
var/avg = counterlist_sum(L)
if(avg != 0)
. = counterlist_scale(L, 1 / avg)
else
. = L
/proc/counterlist_combine(list/L1, list/L2)
for(var/key in L2)
var/other_value = L2[key]
if(key in L1)
L1[key] += other_value
else
L1[key] = other_value
/// Turns an associative list into a flat list of keys
/proc/assoc_to_keys(list/input)
var/list/keys = list()
for(var/key in input)
keys += key
return keys
/proc/compare_list(list/l,list/d)
if(!islist(l) || !islist(d))
return FALSE
if(l.len != d.len)
return FALSE
for(var/i in 1 to l.len)
if(l[i] != d[i])
return FALSE
return TRUE
///sort any value in a list
/proc/sort_list(list/list_to_sort, cmp=/proc/cmp_text_asc)
return sortTim(list_to_sort.Copy(), cmp)
///uses sort_list() but uses the var's name specifically. This should probably be using mergeAtom() instead
/proc/sort_names(list/list_to_sort, order=1)
return sortTim(list_to_sort.Copy(), order >= 0 ? GLOBAL_PROC_REF(cmp_name_asc) : GLOBAL_PROC_REF(cmp_name_dsc))
/// Runtimes if the passed in list is not sorted
/proc/assert_sorted(list/list, name, cmp = GLOBAL_PROC_REF(cmp_numeric_asc))
var/last_value = list[1]
for (var/index in 2 to list.len)
var/value = list[index]
if (call(cmp)(value, last_value) < 0)
stack_trace("[name] is not sorted. value at [index] ([value]) is in the wrong place compared to the previous value of [last_value] (when compared to by [cmp])")
last_value = value
/// Compares 2 lists, returns TRUE if they are the same
/proc/deep_compare_list(list/list_1, list/list_2)
if(!islist(list_1) || !islist(list_2))
return FALSE
if(list_1 == list_2)
return TRUE
if(list_1.len != list_2.len)
return FALSE
for(var/i in 1 to list_1.len)
var/key_1 = list_1[i]
var/key_2 = list_2[i]
if (islist(key_1) && islist(key_2))
if(!deep_compare_list(key_1, key_2))
return FALSE
else if(key_1 != key_2)
return FALSE
if(istext(key_1) || islist(key_1) || ispath(key_1) || isdatum(key_1) || key_1 == world)
var/value_1 = list_1[key_1]
var/value_2 = list_2[key_1]
if (islist(value_1) && islist(value_2))
if(!deep_compare_list(value_1, value_2))
return FALSE
else if(value_1 != value_2)
return FALSE
return TRUE
/**
* Picks a random element from a list based on a weighting system.
* For example, given the following list:
* A = 6, B = 3, C = 1, D = 0
* A would have a 60% chance of being picked,
* B would have a 30% chance of being picked,
* C would have a 10% chance of being picked,
* and D would have a 0% chance of being picked.
* You should only pass integers in.
*/
/proc/pick_weight(list/list_to_pick)
var/total = 0
var/item
for(item in list_to_pick)
if(!list_to_pick[item])
list_to_pick[item] = 0
total += list_to_pick[item]
total = rand(1, total)
for(item in list_to_pick)
total -= list_to_pick[item]
if(total <= 0 && list_to_pick[item])
return item
return null
/// ORs two lazylists together without inserting errant nulls, returning a new list and not modifying the existing lists.
#define LAZY_LISTS_OR(left_list, right_list)\
(length(left_list)\
? length(right_list)\
? (left_list | right_list)\
: left_list.Copy()\
: length(right_list)\
? right_list.Copy()\
: null\
)