-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainPANET.py
175 lines (153 loc) · 6.78 KB
/
trainPANET.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
model_name = "ctorg_tar{}"
"""Training Script"""
import os
import shutil
import numpy as np
import pdb
import random
import torch
import torch.nn as nn
import torch.optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
import torch.backends.cudnn as cudnn
from torchvision.transforms import Compose
import torchvision.transforms as transforms
from torchvision.utils import make_grid
from tensorboardX import SummaryWriter
from config import ex
from util.utils import set_seed, CLASS_LABELS, date
from dataloaders_medical.prostate import *
from models.fewshot import FewShotSeg
from tqdm import tqdm
def overlay_color(img, mask, label, scale=50):
"""
:param img: [1, 256, 256]
:param mask: [1, 256, 256]
:param label: [1, 256, 256]
:return:
"""
# pdb.set_trace()
scale = np.mean(img.cpu().numpy())
mask = mask[0]
label = label[0]
zeros = torch.zeros_like(mask)
zeros = [zeros for _ in range(3)]
zeros[0] = mask
mask = torch.stack(zeros,dim=0)
zeros[1] = label
label = torch.stack(zeros,dim=0)
img_3ch = torch.cat([img,img,img],dim=0)
masked = img_3ch+mask.float()*scale+label.float()*scale
return [masked]
@ex.automain
def main(_run, _config, _log):
'''if _run.observers:
os.makedirs(f'{_run.observers[0].dir}/snapshots', exist_ok=True)
for source_file, _ in _run.experiment_info['sources']:
os.makedirs(os.path.dirname(f'{_run.observers[0].dir}/source/{source_file}'),
exist_ok=True)
_run.observers[0].save_file(source_file, f'source/{source_file}')
shutil.rmtree(f'{_run.observers[0].basedir}/_sources')'''
set_seed(_config['seed'])
cudnn.enabled = True
cudnn.benchmark = True
torch.cuda.set_device(device=_config['gpu_id'])
torch.set_num_threads(1)
_log.info('###### Create model ######')
model = FewShotSeg(pretrained_path=_config['path']['init_path'], cfg=_config['model'])
model = nn.DataParallel(model.cuda(), device_ids=[_config['gpu_id'],])
model.train()
_log.info('###### Load data ######')
data_name = _config['dataset']
if data_name == 'BCV' or data_name == 'CTORG':
make_data = meta_data
else:
print(f"data name : {data_name}")
raise ValueError('Wrong config for dataset!')
tr_dataset, val_dataset, ts_dataset = make_data(_config)
print(len(tr_dataset))
trainloader = DataLoader(
dataset=tr_dataset,
batch_size=_config['batch_size'],
shuffle=True,
num_workers=_config['n_work'],
pin_memory=False, #True load data while training gpu
drop_last=True
)
_log.info('###### Set optimizer ######')
optimizer = torch.optim.SGD(model.parameters(), **_config['optim'])
scheduler = MultiStepLR(optimizer, milestones=_config['lr_milestones'], gamma=0.1)
criterion = nn.CrossEntropyLoss(ignore_index=_config['ignore_label'])
if _config['record']: ## tensorboard visualization
_log.info('###### define tensorboard writer #####')
_log.info(f'##### board/train_{_config["board"]}_{date()}')
writer = SummaryWriter(f'board/train_{_config["board"]}_{date()}')
log_loss = {'loss': 0, 'align_loss': 0}
_log.info('###### Training ######')
total_iter = len(trainloader)
for i_iter, sample_batched in enumerate(tqdm(trainloader)):
# Prepare input
s_x_orig = sample_batched['s_x'].cuda() # [B, Support, slice_num=1, 1, 256, 256]
s_x = s_x_orig.squeeze(2) # [B, Support, 1, 256, 256]
s_y_fg_orig = sample_batched['s_y'].cuda() # [B, Support, slice_num, 1, 256, 256]
s_y_fg = s_y_fg_orig.squeeze(2) # [B, Support, 1, 256, 256]
s_y_fg = s_y_fg.squeeze(2) # [B, Support, 256, 256]
s_y_bg = torch.ones_like(s_y_fg) - s_y_fg
q_x_orig = sample_batched['q_x'].cuda() # [B, slice_num, 1, 256, 256]
q_x = q_x_orig.squeeze(1) # [B, 1, 256, 256]
q_y_orig = sample_batched['q_y'].cuda() # [B, slice_num, 1, 256, 256]
q_y = q_y_orig.squeeze(1) # [B, 1, 256, 256]
q_y = q_y.squeeze(1).long() # [B, 256, 256]
s_xs = [[s_x[:,shot, ...] for shot in range(_config["n_shot"])]]
s_y_fgs = [[s_y_fg[:,shot, ...] for shot in range(_config["n_shot"])]]
s_y_bgs = [[s_y_bg[:,shot, ...] for shot in range(_config["n_shot"])]]
q_xs = [q_x]
with open('query_support_train.txt', 'a') as f:
f.write("Query Set: " + str(sample_batched['q_fname']))
f.write("Support Set: " + str(sample_batched['s_fname']))
f.write("="*60)
"""
Args:
supp_imgs: support images
way x shot x [B x 1 x H x W], list of lists of tensors
fore_mask: foreground masks for support images
way x shot x [B x H x W], list of lists of tensors
back_mask: background masks for support images
way x shot x [B x H x W], list of lists of tensors
qry_imgs: query images
N x [B x 1 x H x W], list of tensors
qry_pred: [B, 2, H, W]
"""
# Forward and Backward
optimizer.zero_grad()
query_pred, align_loss = model(s_xs, s_y_fgs, s_y_bgs, q_xs) #[B, 2, w, h]
query_loss = criterion(query_pred, q_y)
loss = query_loss + align_loss * _config['align_loss_scaler']
loss.backward()
optimizer.step()
scheduler.step()
# Log loss
query_loss = query_loss.detach().data.cpu().numpy()
align_loss = align_loss.detach().data.cpu().numpy() if align_loss != 0 else 0
_run.log_scalar('loss', query_loss)
_run.log_scalar('align_loss', align_loss)
log_loss['loss'] += query_loss
log_loss['align_loss'] += align_loss
# print loss and take snapshots
if (i_iter + 1) % _config['print_interval'] == 0:
loss = log_loss['loss'] / (i_iter + 1)
align_loss = log_loss['align_loss'] / (i_iter + 1)
print(f'step {i_iter+1}/{total_iter}: loss: {loss}, align_loss: {align_loss}')
if _config['record']:
batch_i = 0
frames = []
query_pred = query_pred.argmax(dim=1)
query_pred = query_pred.unsqueeze(1)
frames += overlay_color(q_x_orig[batch_i,0], query_pred[batch_i].float(), q_y_orig[batch_i,0])
visual = make_grid(frames, normalize=True, nrow=2)
writer.add_image("train/visual", visual, i_iter)
print(f"train - iter:{i_iter} \t => model saved", end='\n')
save_fname = f'{_run.observers[0].dir}/snapshots/last.pth'
torch.save(model.state_dict(),save_fname)
torch.save(model.state_dict(), "./model_weights/{}.pth".format(model_name.format(_config["target"])))