Skip to content

fineune_hf.py 运行卡在开始训练时 #1345

@Bayson-create

Description

@Bayson-create

System Info / 系統信息

Cuda 11.5
Transformers 4.40.2
Python 3.12.2
GPU 4090 单卡
内存 32GB
系统:windows wsl2

Who can help? / 谁可以帮助到您?

@Btlmd

Information / 问题信息

  • The official example scripts / 官方的示例脚本
  • My own modified scripts / 我自己修改的脚本和任务

Reproduction / 复现过程

lora_finetune.ipynb 运行 !CUDA_VISIBLE_DEVICES=0 NCCL_P2P_DISABLE="1" NCCL_IB_DISABLE="1" python finetune_hf.py data/AdvertiseGen_fix /home/xiebeichen/chatglm3-6b configs/lora.yaml

输出

Setting eos_token is not supported, use the default one.
Setting pad_token is not supported, use the default one.
Setting unk_token is not supported, use the default one.
Loading checkpoint shards: 100%|██████████████████| 7/7 [00:03<00:00, 2.02it/s]
trainable params: 1,949,696 || all params: 6,245,533,696 || trainable%: 0.031217444255383614
--> Model

--> model has 1.949696M params

train_dataset: Dataset({
features: ['input_ids', 'labels'],
num_rows: 114599
})
val_dataset: Dataset({
features: ['input_ids', 'output_ids'],
num_rows: 1070
})
test_dataset: Dataset({
features: ['input_ids', 'output_ids'],
num_rows: 1070
})
--> Sanity check
'[gMASK]': 64790 -> -100
'sop': 64792 -> -100
'<|user|>': 64795 -> -100
...
Total train batch size (w. parallel, distributed & accumulation) = 4
Gradient Accumulation steps = 1
Total optimization steps = 3,000
Number of trainable parameters = 1,949,696
0%| | 0/3000 [00:00<?, ?it/s]

会卡在开始训练时,0/3000 这个节点,没有报错,nvidia-smi 运行发现显卡并没有被调用

Expected behavior / 期待表现

正常调用 gpu,正常训练

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions