-
Notifications
You must be signed in to change notification settings - Fork 489
/
Copy pathpeering2.java
248 lines (218 loc) · 9.29 KB
/
peering2.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
package guide;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Random;
import org.zeromq.*;
import org.zeromq.ZMQ.Poller;
import org.zeromq.ZMQ.Socket;
// Broker peering simulation (part 2)
// Prototypes the request-reply flow
public class peering2
{
private static final int NBR_CLIENTS = 10;
private static final int NBR_WORKERS = 3;
private static final String WORKER_READY = "\001"; // Signals worker is ready
// Our own name; in practice this would be configured per node
private static String self;
// The client task does a request-reply dialog using a standard
// synchronous REQ socket:
private static class client_task extends Thread
{
@Override
public void run()
{
try (ZContext ctx = new ZContext()) {
Socket client = ctx.createSocket(SocketType.REQ);
client.connect(String.format("ipc://%s-localfe.ipc", self));
while (true) {
// Send request, get reply
client.send("HELLO", 0);
String reply = client.recvStr(0);
if (reply == null)
break; // Interrupted
System.out.printf("Client: %s\n", reply);
try {
Thread.sleep(1000);
}
catch (InterruptedException e) {
}
}
}
}
}
// The worker task plugs into the LRU routing dialog using a REQ
// socket:
private static class worker_task extends Thread
{
@Override
public void run()
{
try (ZContext ctx = new ZContext()) {
Socket worker = ctx.createSocket(SocketType.REQ);
worker.connect(String.format("ipc://%s-localbe.ipc", self));
// Tell broker we're ready for work
ZFrame frame = new ZFrame(WORKER_READY);
frame.send(worker, 0);
while (true) {
// Send request, get reply
ZMsg msg = ZMsg.recvMsg(worker, 0);
if (msg == null)
break; // Interrupted
msg.getLast().print("Worker: ");
msg.getLast().reset("OK");
msg.send(worker);
}
}
}
}
// The main task begins by setting-up its frontend and backend sockets
// and then starting its client and worker tasks:
public static void main(String[] argv)
{
// First argument is this broker's name
// Other arguments are our peers' names
//
if (argv.length < 1) {
System.out.println("syntax: peering2 me {you}");
System.exit(-1);
}
self = argv[0];
System.out.printf("I: preparing broker at %s\n", self);
Random rand = new Random(System.nanoTime());
try (ZContext ctx = new ZContext()) {
// Bind cloud frontend to endpoint
Socket cloudfe = ctx.createSocket(SocketType.ROUTER);
cloudfe.setIdentity(self.getBytes(ZMQ.CHARSET));
cloudfe.bind(String.format("ipc://%s-cloud.ipc", self));
// Connect cloud backend to all peers
Socket cloudbe = ctx.createSocket(SocketType.ROUTER);
cloudbe.setIdentity(self.getBytes(ZMQ.CHARSET));
int argn;
for (argn = 1; argn < argv.length; argn++) {
String peer = argv[argn];
System.out.printf(
"I: connecting to cloud forintend at '%s'\n", peer
);
cloudbe.connect(String.format("ipc://%s-cloud.ipc", peer));
}
// Prepare local frontend and backend
Socket localfe = ctx.createSocket(SocketType.ROUTER);
localfe.bind(String.format("ipc://%s-localfe.ipc", self));
Socket localbe = ctx.createSocket(SocketType.ROUTER);
localbe.bind(String.format("ipc://%s-localbe.ipc", self));
// Get user to tell us when we can start
System.out.println("Press Enter when all brokers are started: ");
try {
System.in.read();
}
catch (IOException e) {
e.printStackTrace();
}
// Start local workers
int worker_nbr;
for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
new worker_task().start();
// Start local clients
int client_nbr;
for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
new client_task().start();
// Here we handle the request-reply flow. We're using the LRU
// approach to poll workers at all times, and clients only when
// there are one or more workers available.
// Least recently used queue of available workers
int capacity = 0;
ArrayList<ZFrame> workers = new ArrayList<>();
Poller backends = ctx.createPoller(2);
backends.register(localbe, Poller.POLLIN);
backends.register(cloudbe, Poller.POLLIN);
Poller frontends = ctx.createPoller(2);
frontends.register(localfe, Poller.POLLIN);
frontends.register(cloudfe, Poller.POLLIN);
while (true) {
// First, route any waiting replies from workers
// If we have no workers anyhow, wait indefinitely
int rc = backends.poll(capacity > 0 ? 1000 : -1);
if (rc == -1)
break; // Interrupted
// Handle reply from local worker
ZMsg msg = null;
if (backends.pollin(0)) {
msg = ZMsg.recvMsg(localbe);
if (msg == null)
break; // Interrupted
ZFrame address = msg.unwrap();
workers.add(address);
capacity++;
// If it's READY, don't route the message any further
ZFrame frame = msg.getFirst();
String frameData = new String(frame.getData(), ZMQ.CHARSET);
if (frameData.equals(WORKER_READY)) {
msg.destroy();
msg = null;
}
}
// Or handle reply from peer broker
else if (backends.pollin(1)) {
msg = ZMsg.recvMsg(cloudbe);
if (msg == null)
break; // Interrupted
// We don't use peer broker address for anything
ZFrame address = msg.unwrap();
address.destroy();
}
// Route reply to cloud if it's addressed to a broker
for (argn = 1; msg != null && argn < argv.length; argn++) {
byte[] data = msg.getFirst().getData();
if (argv[argn].equals(new String(data, ZMQ.CHARSET))) {
msg.send(cloudfe);
msg = null;
}
}
// Route reply to client if we still need to
if (msg != null)
msg.send(localfe);
// Now we route as many client requests as we have worker
// capacity for. We may reroute requests from our local
// frontend, but not from // the cloud frontend. We reroute
// randomly now, just to test things out. In the next version
// we'll do this properly by calculating cloud capacity://
while (capacity > 0) {
rc = frontends.poll(0);
assert (rc >= 0);
int reroutable;
// We'll do peer brokers first, to prevent starvation
if (frontends.pollin(1)) {
msg = ZMsg.recvMsg(cloudfe);
reroutable = 0;
}
else if (frontends.pollin(0)) {
msg = ZMsg.recvMsg(localfe);
reroutable = 1;
}
else break; // No work, go back to backends
// If reroutable, send to cloud 20% of the time
// Here we'd normally use cloud status information
if (reroutable != 0 &&
argv.length > 1 &&
rand.nextInt(5) == 0) {
// Route to random broker peer
int random_peer = rand.nextInt(argv.length - 1) + 1;
msg.push(argv[random_peer]);
msg.send(cloudbe);
}
else {
ZFrame frame = workers.remove(0);
msg.wrap(frame);
msg.send(localbe);
capacity--;
}
}
}
// When we're done, clean up properly
while (!workers.isEmpty()) {
ZFrame frame = workers.remove(0);
frame.destroy();
}
}
}
}