Skip to content

Latest commit

 

History

History
137 lines (97 loc) · 2.95 KB

0062._unique_paths.md

File metadata and controls

137 lines (97 loc) · 2.95 KB

62. unique paths

难度: Medium

刷题内容

原题连接

内容描述

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:

Input: m = 7, n = 3
Output: 28

解题方案

思路 1 - 时间复杂度: O(m * n)- 空间复杂度: O(m * n)******

1 1 1
1 2 3
1 3 6
1 4 10
1 5 15
1 6 21
1 7 28

dp[i][j]代表的是走到点(i, j)有多少种path

beats 99.08%

class Solution(object):
    def uniquePaths(self, m, n):
        """
        :type m: int
        :type n: int
        :rtype: int
        """
        if m < 1 or n < 1:
            return 0
        dp = [[1] * n for i in range(m)]
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[-1][-1]

思路 2 - 时间复杂度: O(m * n)- 空间复杂度: O(n)******

根据上面的表格,我们可以看出规律,每一行的下一行都是它自身的前缀和数组

这样我们可以将空间降到O(n),先固定初始行的值,全为1,然后开始循环计算剩下的m-1次

beats 99.08%

class Solution(object):
    def uniquePaths(self, m, n):
        """
        :type m: int
        :type n: int
        :rtype: int
        """
        if m < 1 or n < 1:
            return 0
        dp = [1] * n
        for i in range(1, m):
            for j in range(1, n):
                dp[j] += dp[j-1]
        return dp[n-1]

思路 3 - 时间复杂度: O(m + n)- 空间复杂度: O(1)******

这道题我一看到就觉得这不就是排列组合吗,一共走m+n-2步, 其中m-1步是向右边走,所以不就是从m+n-2中选m-1个的问题吗,阶乘问题,so easy! 妈妈 再也不用担心我的学习!!这个方法beats 99.97%

class Solution(object):
    def uniquePaths(self, m, n):
        """
        :type m: int
        :type n: int
        :rtype: int
        """
        def factorial(num):
            res = 1
            for i in range(1, num+1):
                res *= i
            return res
        return factorial(m+n-2) / factorial(n-1) / factorial(m-1)

另外补充一句,我发现math模块里面自带factorial函数,只要import math之后调用即可,