难度: Easy
原题连接
内容描述
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N, calculate F(N).
Example 1:
Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N ≤ 30.
思路 1 - 时间复杂度: O(N)- 空间复杂度: O(N)******
top-down(memorize)
class Solution:
cache = {
0: 0,
1: 1
}
def fib(self, N):
"""
:type N: int
:rtype: int
"""
def helper(n):
if n in self.cache:
return self.cache[n]
else:
self.cache[n] = self.fib(n-1) + self.fib(n-2)
return self.cache[n]
return helper(N)
思路 2 - 时间复杂度: O(N)- 空间复杂度: O(N)******
bottom up(tabulation)
class Solution:
def fib(self, N):
"""
:type N: int
:rtype: int
"""
fibs = [0, 1, 1]
if N < 3:
return fibs[N]
for k in range(2, N+1):
fibs[2] = fibs[0] + fibs[1]
fibs[0], fibs[1] = fibs[1], fibs[2]
return fibs[2]
思路 3 - 时间复杂度: O(N)- 空间复杂度: O(N)******
import functools
class Solution:
@functools.lru_cache(maxsize=None)
def fib(self, N):
"""
:type N: int
:rtype: int
"""
if N <= 1:
return N
else:
return self.fib(N - 1) + self.fib(N - 2)