Skip to content

Latest commit

 

History

History
152 lines (98 loc) · 3.52 KB

0526._Beautiful_Arrangement.md

File metadata and controls

152 lines (98 loc) · 3.52 KB

526. Beautiful Arrangement

难度: Medium

刷题内容

原题连接

内容描述

Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:

The number at the ith position is divisible by i.
i is divisible by the number at the ith position.
Now given N, how many beautiful arrangements can you construct?

Example 1:
Input: 2
Output: 2
Explanation: 

The first beautiful arrangement is [1, 2]:

Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).

Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).

The second beautiful arrangement is [2, 1]:

Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).

Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note:
N is a positive integer and will not exceed 15.

解题方案

思路 1 - 时间复杂度: O(N!)- 空间复杂度: O(N)******

一个一个匹配,只有匹配上了才匹配下一个,因为不是每一个位置上可以整除的数字都很多,并且随着确定的数字越来越多,我们可以选择的数字也越来越少, 算法可以越来越快,我估摸着算是个O(N^2)的算法吧

class Solution(object):
    def countArrangement(self, N):
        """
        :type N: int
        :rtype: int
        """
        nums = [i+1 for i in range(N)]
        self.res = 0
        
        def permute(nums, cur_idx):
            if cur_idx == len(nums):
                self.res += 1
            for i in range(cur_idx, N):
                nums[i], nums[cur_idx] = nums[cur_idx], nums[i]
                if nums[cur_idx] % (cur_idx+1) == 0 or (cur_idx+1) % nums[cur_idx] == 0:
                    permute(nums, cur_idx+1)
                nums[cur_idx], nums[i] = nums[i], nums[cur_idx]
        permute(nums, 0)
        return self.res

思路 2 - 时间复杂度: O(N!)- 空间复杂度: O(N)******

如果记录一下已经用过的数字可能会更快一点

beats 43.60%

class Solution(object):
    def countArrangement(self, N):
        """
        :type N: int
        :rtype: int
        """
        visited = [False] * (N+1)
        self.res = 0
        
        def cal(cur_idx, visited):
            if cur_idx > N:
                self.res += 1
            for i in range(1, N+1):
                if not visited[i] and (i % cur_idx == 0 or cur_idx % i == 0):
                    visited[i] = True
                    cal(cur_idx+1, visited)
                    visited[i] = False
        cal(1, visited)
        return self.res

思路 3 - 时间复杂度: O(N!)- 空间复杂度: O(N!)******

用个cache记下来我们已经匹配过的情况

beats 97.60%

class Solution(object):
    cache = {}
    def countArrangement(self, N):
        """
        :type N: int
        :rtype: int
        """
        def helper(i, nums):
            if i == 1:
                return 1
            key = (i, nums)
            if key in self.cache:
                return self.cache[key]
            total = sum(helper(i-1, nums[:idx] + nums[idx+1:])
                        for idx, num in enumerate(nums)
                        if num % i == 0 or i % num == 0)
            self.cache[key] = total
            return total
        return helper(N, tuple(range(1, N + 1)))