Skip to content

Latest commit

 

History

History
173 lines (121 loc) · 4.45 KB

0900._RLE_Iterator.md

File metadata and controls

173 lines (121 loc) · 4.45 KB

900. RLE Iterator

难度: Medium

刷题内容

原题连接

内容描述


Write an iterator that iterates through a run-length encoded sequence.

The iterator is initialized by RLEIterator(int[] A), where A is a run-length encoding of some sequence.  More specifically, for all even i, A[i] tells us the number of times that the non-negative integer value A[i+1] is repeated in the sequence.

The iterator supports one function: next(int n), which exhausts the next n elements (n >= 1) and returns the last element exhausted in this way.  If there is no element left to exhaust, next returns -1 instead.

For example, we start with A = [3,8,0,9,2,5], which is a run-length encoding of the sequence [8,8,8,5,5].  This is because the sequence can be read as "three eights, zero nines, two fives".

 

Example 1:

Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]]
Output: [null,8,8,5,-1]
Explanation: 
RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]).
This maps to the sequence [8,8,8,5,5].
RLEIterator.next is then called 4 times:

.next(2) exhausts 2 terms of the sequence, returning 8.  The remaining sequence is now [8, 5, 5].

.next(1) exhausts 1 term of the sequence, returning 8.  The remaining sequence is now [5, 5].

.next(1) exhausts 1 term of the sequence, returning 5.  The remaining sequence is now [5].

.next(2) exhausts 2 terms, returning -1.  This is because the first term exhausted was 5,
but the second term did not exist.  Since the last term exhausted does not exist, we return -1.

Note:

0 <= A.length <= 1000
A.length is an even integer.
0 <= A[i] <= 10^9
There are at most 1000 calls to RLEIterator.next(int n) per test case.
Each call to RLEIterator.next(int n) will have 1 <= n <= 10^9.

解题方案

思路 1 - 时间复杂度: O(N)- 空间复杂度: O(len(A))******

周赛的时候做的这道题,刚开始很sb,抱着试试的想法直接全部装起来然后一个个返回,果然太 naive

class RLEIterator(object):

    def __init__(self, A):
        """
        :type A: List[int]
        """
        self.lst = A
        self.tmp = []
        for i in range(0, len(self.lst), 2):
            self.tmp.extend([self.lst[i+1]]*self.lst[i])
            
        

    def next(self, n):
        """
        :type n: int
        :rtype: int
        """
        if len(self.tmp) < n:
            return -1
        else:
            for i in range(n):
                if i == n-1:
                    return self.tmp.pop(0)
                self.tmp.pop(0)

思路 2 - 时间复杂度: O(N)- 空间复杂度: O(len(A))******

然后写了半天,每次只取一个的逻辑,还是超时了。真的蠢。。。。

class RLEIterator(object):

    def __init__(self, A):
        """
        :type A: List[int]
        """
        self.lst = A
        self.tmp = []
        self.cnt, self.num = 0, 0

            
        

    def next(self, n):
        """
        :type n: int
        :rtype: int
        """
        if self.tmp:
            if n == 1:
                return self.tmp.pop(0)
            else:
                self.tmp.pop(0)
                return self.next(n-1)
        else:
            if self.cnt > 0:
                self.tmp.append(self.num)
                self.cnt -= 1
                return self.next(n)
            else:
                if self.lst:
                    self.cnt, self.num = self.lst.pop(0), self.lst.pop(0)
                    return self.next(n)
                else:
                    return -1

思路 3 - 时间复杂度: O(N)- 空间复杂度: O(len(A))******

利用python built-in数据结构deque的性质,直接AC, beats 100%

class RLEIterator(object):

    def __init__(self, A):
        """
        :type A: List[int]
        """
        self._deque = collections.deque(A)
        

    def next(self, n):
        """
        :type n: int
        :rtype: int
        """
        while self._deque and n:
            count = self._deque.popleft()
            val = self._deque[0]
            if count >= n:
                self._deque.appendleft(count-n)
                return val
            else:
                n -= count
                self._deque.popleft()
        return -1
            
        


# Your RLEIterator object will be instantiated and called as such:
# obj = RLEIterator(A)
# param_1 = obj.next(n)