难度: Hard
原题连接
内容描述
Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K.
(For example, [1,2,3,1,2] has 3 different integers: 1, 2, and 3.)
Return the number of good subarrays of A.
Example 1:
Input: A = [1,2,1,2,3], K = 2
Output: 7
Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2].
Example 2:
Input: A = [1,2,1,3,4], K = 3
Output: 3
Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4].
Note:
1 <= A.length <= 20000
1 <= A[i] <= A.length
1 <= K <= A.length
思路 1 - 时间复杂度: O(N)- 空间复杂度: O(N)******
For an index i, we define two pointers, left and right.
left is defined as the smallest index such that A[left...i] has K distinct elements,
right is defined as the largest index such that A[right...i] has K distinct element.
Therefore, the number of subarrays ending at i that have K distinct elements is right-left+1.
Each index enters any of the maps at most once, and exits at at most once. Therefore the complexity is O(N).
参考C++, O(N) algorithm, two maps for two pointers, easy to understand
class Solution:
def subarraysWithKDistinct(self, A: 'List[int]', K: 'int') -> 'int':
mapl, mapr = collections.defaultdict(int), collections.defaultdict(int)
l, r, res = 0, 0, 0
for i in range(len(A)):
mapl[A[i]] += 1
mapr[A[i]] += 1
if len(mapr) < K:
continue
while len(mapl) > K:
mapl[A[l]] -= 1
if mapl[A[l]] == 0:
del mapl[A[l]]
l += 1
while len(mapr) > K:
mapr[A[r]] -= 1
if mapr[A[r]] == 0:
del mapr[A[r]]
r += 1
while mapr[A[r]] > 1:
mapr[A[r]] -= 1
r += 1
res += r - l + 1
return res
思路 2 - 时间复杂度: O(N)- 空间复杂度: O(N)******
用寒神的思路+[第340题]的套路(只需要将res = max(res, r - l)
这行代码改成res += r - l
即可)
class Solution:
def subarraysWithKDistinct(self, A: 'List[int]', K: 'int') -> 'int':
return self.subarraysWithAtMostKDistinct(A, K) - self.subarraysWithAtMostKDistinct(A, K-1)
def subarraysWithAtMostKDistinct(self, s, k):
lookup = collections.defaultdict(int)
l, r, counter, res = 0, 0, 0, 0
while r < len(s):
lookup[s[r]] += 1
if lookup[s[r]] == 1:
counter += 1
r += 1 # end 永远指向下一个待处理的字符
while l < r and counter > k:
lookup[s[l]] -= 1
if lookup[s[l]] == 0:
counter -= 1
l += 1
res += r - l # 因此这里是r-l而不是r-l+1
return res