forked from Bill-Gray/find_orb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorb_fun2.cpp
790 lines (694 loc) · 25.1 KB
/
orb_fun2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/* orb_fun2.cpp: basic orbital element/numerical integration funcs
Copyright (C) 2010, Project Pluto
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include "watdefs.h"
#include "comets.h"
#include "afuncs.h"
#include "mpc_obs.h"
#define PI 3.1415926535897932384626433832795028841971693993751058209749445923078
#define GAUSS_K .01720209895
#define SOLAR_GM (GAUSS_K * GAUSS_K)
int generate_mc_variant_from_covariance( double *orbit); /* orb_fun2.cpp */
double improve_along_lov( double *orbit, const double epoch, const double *lov,
const unsigned n_params, unsigned n_obs, OBSERVE *obs);
const char *get_environment_ptr( const char *env_ptr); /* mpc_obs.cpp */
int adjust_herget_results( OBSERVE FAR *obs, int n_obs, double *orbit);
double evaluate_for_simplex_method( const OBSERVE FAR *obs,
const int n_obs, const double *orbit,
const int planet_orbiting,
const char *limited_orbit); /* orb_func.cpp */
void init_simplex( double **vects, double *fvals,
double (*f)( void *context, const double *vect),
void *context, const int n); /* simplex.c */
int simplex_step( double **vects, double *fvals,
double (*f)( void *context, const double *vect),
void *context, const int n); /* simplex.c */
extern int available_sigmas;
extern int debug_level;
int debug_printf( const char *format, ...) /* runge.cpp */
#ifdef __GNUC__
__attribute__ (( format( printf, 1, 2)))
#endif
;
typedef struct
{
OBSERVE FAR *obs;
int n_obs, n_params;
const char *constraints;
double orbit[6];
} simplex_context_t;
static double simplex_scoring( void *icontext, const double *ivect)
{
simplex_context_t *context = (simplex_context_t *)icontext;
double rval;
if( context->n_params == 2)
{
herget_method( context->obs, context->n_obs, ivect[0], ivect[1],
context->orbit, NULL, NULL, NULL);
adjust_herget_results( context->obs, context->n_obs, context->orbit);
}
else
{
memcpy( context->orbit, ivect, 6 * sizeof( double));
set_locs( context->orbit, context->obs[0].jd, context->obs,
context->n_obs);
}
rval = evaluate_for_simplex_method( context->obs, context->n_obs,
context->orbit, 0, context->constraints);
// printf( "Radii %f, %f: score %f\n", ivect[0], ivect[1], rval);
return( rval);
}
int simplex_method( OBSERVE FAR *obs, int n_obs, double *orbit,
const double r1, const double r2, const char *constraints)
{
int i, iter;
int max_iter = atoi( get_environment_ptr( "SIMPLEX_ITER"));
double rvals[6], *rptr[3], scores[3];
simplex_context_t context;
for( i = 0; i < 3; i++)
{
rptr[i] = rvals + i * 2;
rptr[i][0] = r1 * (i == 1 ? 1.1 : 1);
rptr[i][1] = r2 * (i == 2 ? 1.1 : 1);
}
context.obs = obs;
context.n_obs = n_obs;
context.n_params = 2;
context.constraints = constraints;
init_simplex( rptr, scores, simplex_scoring, &context, context.n_params);
if( !max_iter)
max_iter = 70;
for( iter = 0; iter < max_iter; iter++)
{
// printf( "Iter %d\n", iter);
simplex_step( rptr, scores, simplex_scoring, &context, context.n_params);
}
memcpy( orbit, context.orbit, 6 * sizeof( double));
available_sigmas = NO_SIGMAS_AVAILABLE;
return( iter);
}
#ifdef NOT_USED_YET
static void adjust_orbit_to_constraints( double *orbit, const char *constraints)
{
if( constraints && !strcmp( constraints, "e=1"))
{
const double r = vector3_length( orbit);
const double v_esc = sqrt( 2. * SOLAR_GM / r);
const double v = vector3_length( orbit + 3);
const double rescale = v_esc / v;
int i;
for( i = 3; i < 6; i++)
orbit[i] *= rescale;
}
}
#endif
int superplex_method( OBSERVE FAR *obs, int n_obs, double *orbit, const char *constraints)
{
int i, iter;
int max_iter = atoi( get_environment_ptr( "SUPERPLEX_ITER"));
double rvals[42], *rptr[7], scores[7];
simplex_context_t context;
for( i = 0; i < 7; i++)
{
rptr[i] = rvals + i * 6;
memcpy( rptr[i], orbit, 6 * sizeof( double));
if( i < 6)
rptr[i][i] += (i < 3 ? .01 : .0003);
}
context.obs = obs;
context.n_obs = n_obs;
context.n_params = 6;
context.constraints = constraints;
init_simplex( rptr, scores, simplex_scoring, &context, context.n_params);
if( !max_iter)
max_iter = 70;
for( iter = 0; iter < max_iter; iter++)
{
// printf( "Iter %d\n", iter);
simplex_step( rptr, scores, simplex_scoring, &context, context.n_params);
}
memcpy( orbit, context.orbit, 6 * sizeof( double));
available_sigmas = NO_SIGMAS_AVAILABLE;
return( iter);
}
/* For filtering to work, you need at least three observations with */
/* residuals inside the desired max_residual limit. We do one pass */
/* just to make sure there are at least three observations that'll */
/* still be active when the filtering is done. If not, we make */
/* no changes and return FILTERING_FAILED. */
#define FILTERING_CHANGES_MADE 1
#define FILTERING_NO_CHANGES_MADE 2
#define FILTERING_FAILED 3
int filter_obs( OBSERVE FAR *obs, const int n_obs,
const double max_residual_in_arcseconds)
{
const double max_resid = /* cvt arcseconds to radians */
max_residual_in_arcseconds * PI / (180. * 3600.);
int i, pass, n_active = 0, rval = FILTERING_NO_CHANGES_MADE;
for( pass = 0; pass < 2; pass++)
{
for( i = 0; i < n_obs && rval != FILTERING_FAILED; i++)
{
const double dy = obs[i].dec - obs[i].computed_dec;
const double dx = (obs[i].ra - obs[i].computed_ra) * cos( obs[i].dec);
const int is_okay = (dx * dx + dy * dy < max_resid * max_resid);
if( !pass && is_okay)
{
n_active++;
if( n_active == 3) /* found enough; break out of loop */
break;
}
if( pass && is_okay != obs[i].is_included)
{
obs[i].is_included ^= 1;
rval = FILTERING_CHANGES_MADE;
}
}
if( n_active < 3)
rval = FILTERING_FAILED;
}
return( rval);
}
/* For the 'undo' functions in Find_Orb, it's convenient to have
a way to store orbits on a stack, then retrieve them in the usual
last-in-first-out order. Also, if you switch to a new object, you
presumably don't want all the stored orbits retained; hence the
'pop_all_orbits()' function. In reality, the orbits are stored
in a linked list. */
#define STORED_ORBIT struct stored_orbit
static STORED_ORBIT
{
STORED_ORBIT *prev;
double epoch;
double orbit[6];
double solar_pressure[MAX_N_NONGRAV_PARAMS];
int n_extra_params;
} *stored = NULL;
extern double solar_pressure[];
extern int n_extra_params;
void push_orbit( const double epoch, const double *orbit)
{
STORED_ORBIT *head = (STORED_ORBIT *)malloc( sizeof( STORED_ORBIT));
assert( head);
if( head)
{
head->prev = stored;
head->epoch = epoch;
memcpy( head->orbit, orbit, 6 * sizeof( double));
memcpy( head->solar_pressure, solar_pressure, n_extra_params * sizeof( double));
head->n_extra_params = n_extra_params;
stored = head;
}
}
int pop_orbit( double *epoch, double *orbit)
{
const int rval = (stored ? 0 : -1);
if( stored)
{
STORED_ORBIT *tptr = stored->prev;
if( epoch)
{
*epoch = stored->epoch;
memcpy( orbit, stored->orbit, 6 * sizeof( double));
n_extra_params = stored->n_extra_params;
memcpy( solar_pressure, stored->solar_pressure, n_extra_params * sizeof( double));
available_sigmas = NO_SIGMAS_AVAILABLE;
}
free( stored);
stored = tptr;
}
return( rval);
}
void pop_all_orbits( void)
{
double unused_epoch;
double unused_orbit[6];
while( !pop_orbit( &unused_epoch, unused_orbit))
;
}
FILE *fopen_ext( const char *filename, const char *permits); /* miscell.cpp */
double dot_product( const double *v1, const double *v2); /* sr.c */
void set_distance( OBSERVE FAR *obs, double r); /* orb_func.c */
/* The linear regression fit here is used to determine a perihelion distance
q, eccentricity ecc, and longitude of perihelion omega. The idea is that
r = z / (1. + ecc * cos( lon - omega))
where z = q (1 + ecc);
z / r = 1 + ecc * cos( lon - omega)
= 1 + (ecc * cos(omega)) * cos( lon) + (ecc * sin(omega)) * sin( lon)
1/r = a + b cos(lon) + c sin(lon)
....where a = 1/z, b = ecc * cos(omega)/z, c = ecc * sin(omega)/z. So
we can solve for best-fit versions of a, b, and c; from these, we can
then determine z=1/a, ecc = sqrt( b^2+c^2) * z, omega = atan2(c, b),
then q = z/(1+ecc). */
int link_arcs( OBSERVE *obs, int n_obs, const double r1, const double r2)
{
OBSERVE *end_obs = obs + n_obs - 1;
double a, b, c;
double rvect[3], rlen, *theta, *r;
double avect[3], bvect[3], ecc, omega, q;
/* Coeffs for three-variable multiple linear regression: */
/* See Meeus, _Astronomical Algorithms_, p 44 */
double fit_m = 0., fit_p = 0., fit_q = 0., fit_r = 0., fit_s = 0.;
double fit_t = 0., fit_u = 0., fit_v = 0., fit_w = 0., fit_d;
double sum_of_squares = 0.;
FILE *ofile;
int i;
while( n_obs && !obs->is_included)
{
obs++;
n_obs--;
}
while( n_obs && !end_obs->is_included)
{
end_obs--;
n_obs--;
}
if( n_obs < 3)
return( -2);
set_distance( obs, r1);
set_distance( end_obs, r2);
vector_cross_product( rvect, obs->obj_posn, end_obs->obj_posn);
rlen = vector3_length( rvect);
if( rvect[2] < 0.) /* assume a prograde orbit */
rlen = -rlen;
for( i = 0; i < 3; i++)
rvect[i] /= rlen;
ofile = fopen_ext( "gauss.out", "tfcwb");
fprintf( ofile, "%.10f %.10f %.10f\n",
rvect[0], rvect[1], rvect[2]);
rlen = sqrt( rvect[0] * rvect[0] + rvect[1] * rvect[1]);
fprintf( ofile, "Omega = %.5f incl = %.5f\n",
180. - atan2( rvect[0], rvect[1]) * 180. / PI,
atan2( rlen, rvect[2]) * 180. / PI);
avect[0] = -rvect[1] / rlen;
avect[1] = rvect[0] / rlen;
avect[2] = 0.;
vector_cross_product( bvect, avect, rvect);
theta = (double *)calloc( n_obs * 2, sizeof( double));
if( !theta)
return( -1);
r = theta + n_obs;
for( i = 0; i < n_obs; i++)
{
int j;
const double dval1 = dot_product( obs[i].obs_posn, rvect);
const double dval2 = dot_product( obs[i].vect, rvect);
const double dist_to_target = -dval1 / dval2;
double x, y, loc[3];
double sin_theta, cos_theta;
/* Find where the observed vector would intersect the */
/* plane defined by dot_product( loc, rvect) = 0: */
for( j = 0; j < 3; j++)
loc[j] = obs[i].obs_posn[j] + obs[i].vect[j] * dist_to_target;
fprintf( ofile, "Dist to target: %f (%f)\n", dist_to_target, obs[i].r);
x = dot_product( loc, avect);
y = dot_product( loc, bvect);
theta[i] = atan2( y, x);
sin_theta = sin( theta[i]);
cos_theta = cos( theta[i]);
// r[i] = obs[i].solar_r;
r[i] = vector3_length( loc);
fit_p += sin_theta;
fit_q += cos_theta;
fit_r += sin_theta * sin_theta;
fit_s += cos_theta * sin_theta;
fit_t += cos_theta * cos_theta;
fit_u += 1. / r[i];
fit_v += sin_theta / r[i];
fit_w += cos_theta / r[i];
}
fit_m = (double)n_obs;
fit_d = fit_m * fit_r * fit_t + 2. * fit_p * fit_q * fit_s
- fit_m * fit_s * fit_s - fit_r * fit_q * fit_q
- fit_t * fit_p * fit_p;
a = fit_u * (fit_r * fit_t - fit_s * fit_s)
+ fit_v * (fit_q * fit_s - fit_p * fit_t)
+ fit_w * (fit_p * fit_s - fit_q * fit_r);
b = fit_u * (fit_s * fit_q - fit_p * fit_t)
+ fit_v * (fit_m * fit_t - fit_q * fit_q)
+ fit_w * (fit_p * fit_q - fit_m * fit_s);
c = fit_u * (fit_p * fit_s - fit_r * fit_q)
+ fit_v * (fit_p * fit_q - fit_m * fit_s)
+ fit_w * (fit_m * fit_r - fit_p * fit_p);
a /= fit_d;
b /= fit_d;
c /= fit_d;
ecc = sqrt( b * b + c * c) / a;
omega = atan2( c, b) + 3. * PI / 2.;
if( omega > PI + PI)
omega -= PI + PI;
q = 1. / (a * (1. + ecc));
fprintf( ofile, "ecc = %f omega = %f q = %f a = %f\n",
ecc, omega * 180. / PI, q, q / (1. - ecc));
for( i = 0; i < n_obs; i++)
{
const double fitted_r = 1. / (a + b * sin( theta[i]) + c * cos( theta[i]));
const double dr = r[i] - fitted_r;
sum_of_squares += dr * dr;
}
free( theta);
fprintf( ofile, "Error %f\n", sqrt( sum_of_squares / (double)n_obs));
fclose( ofile);
available_sigmas = NO_SIGMAS_AVAILABLE;
return( 0);
}
double find_r_given_solar_r( const OBSERVE FAR *obs, const double solar_r);
static int set_up_circular_orbit( OBSERVE FAR *obs1, OBSERVE FAR *obs2,
const double solar_r, double *dt, double *t0,
double *orbit)
{
double delta[3], angle;
int i;
set_distance( obs1, find_r_given_solar_r( obs1, solar_r));
set_distance( obs2, find_r_given_solar_r( obs2, solar_r));
*t0 = solar_r * sqrt( solar_r) / GAUSS_K;
for( i = 0; i < 3; i++)
delta[i] = obs2->obj_posn[i] - obs1->obj_posn[i];
angle = 2. * asin( vector3_length( delta) * .5 / solar_r);
*dt = angle * (*t0);
*t0 *= 2. * PI;
// debug_printf( "Solar_r %f, dt = %f, t0 = %f\n",
// solar_r, *dt, *t0);
if( orbit)
{
double xprod[30], scale, vel[30];
vector_cross_product( xprod, obs1->obj_posn, obs2->obj_posn);
vector_cross_product( vel, xprod, obs1->obj_posn);
/* Circular orbit speed is GAUSS_K / sqrt( solar_r), so: */
scale = (GAUSS_K / sqrt( solar_r)) / vector3_length( vel);
for( i = 0; i < 3; i++)
{
orbit[i] = obs1->obj_posn[i];
orbit[i + 3] = vel[i] * scale;
}
}
return( obs1->r > 0. && obs2->r > 0.);
}
int find_circular_orbits( OBSERVE FAR *obs1, OBSERVE FAR *obs2,
double *orbit, const int desired_soln)
{
double dt = obs2->jd - obs1->jd, t0;
double dt_1 = 0., t0_1 = 0., dt_2, t0_2;
double r1 = 1.02, r2, radii[50];
int n_solutions = 0, soln_type, types[50];
debug_printf( "Delta_t = %f\n", dt);
while( r1 < 100. && n_solutions <= desired_soln)
{
r2 = r1;
dt_2 = dt_1;
t0_2 = t0_1;
if( r1 < 3.5)
r1 += .05;
else
r1 *= 1.05;
set_up_circular_orbit( obs1, obs2, r1, &dt_1, &t0_1, NULL);
if( t0_2)
{
int bug_out = 0;
for( soln_type = 0; !bug_out; soln_type++)
{
const double delta_1 = t0_1 * (double)( soln_type / 2)
+ ((soln_type & 1) ? t0_1 - dt_1 : dt_1) - dt;
const double delta_2 = t0_2 * (double)( soln_type / 2)
+ ((soln_type & 1) ? t0_2 - dt_2 : dt_2) - dt;
if( delta_1 * delta_2 < 0.) /* we have a zero crossing */
{
const double r3 = (r1 * delta_2 - r2 * delta_1) / (delta_2 - delta_1);
double delta_3, t0_3, dt_3;
set_up_circular_orbit( obs1, obs2, r3, &dt_3, &t0_3, NULL);
delta_3 = t0_3 * (double)( soln_type / 2)
+ ((soln_type & 1) ? t0_3 - dt_3 : dt_3) - dt;
types[n_solutions] = soln_type;
radii[n_solutions++] =
(r1 * delta_3 - r3 * delta_1) / (delta_3 - delta_1);
// debug_printf( "Soln %d: type %d, r=%f\n",
// n_solutions, soln_type, radii[n_solutions - 1]);
}
if( delta_1 > dt + t0_1)
bug_out = 1;
}
}
}
if( !n_solutions)
return( -1);
set_up_circular_orbit( obs1, obs2, radii[desired_soln % n_solutions],
&dt, &t0, orbit);
if( types[desired_soln % n_solutions] & 1)
{
int i;
for( i = 3; i < 6; i++)
orbit[i] *= -1.;
}
available_sigmas = NO_SIGMAS_AVAILABLE;
return( 0);
}
/* Shamelessly copied (with minor changes) from
https://siliconandlithium.blogspot.com/2014/05/msvc-c99-mathh-header.html
https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
As described at the second link, this has maximum error of 1.5x10^-7.
(Which isn't a problem here, but some caution would be appropriate.)
It's only used in early MSVCs which lack erf(), and in OpenWATCOM. */
#if defined( _MSC_VER) && (_MSC_VER < 1800) || defined( __WATCOMC__)
double erf( double x)
{
const double a1 = 0.254829592, a2 = -0.284496736, a3 = 1.421413741;
const double a4 = -1.453152027, a5 = 1.061405429, p = 0.3275911;
const int sign = (x >= 0) ? 1 : -1;
double t, y;
x = fabs(x);
t = 1.0 / (1.0 + p*x);
y = 1.0 - (((((a5 * t + a4 ) * t) + a3) * t + a2) * t + a1) * t * exp(-x * x);
return sign*y;
}
#endif
/* In computing the inverse of the error function, it helps that the
derivative of erf( ) is easily computed. Easy derivatives mean easy
Newton-Raphson root-finding. An easy second derivative, in this case,
means an easy Halley's root-finder, with cubic convergence.
d erf(x)
-------- = (2/sqrt(pi)) exp( -x^2)
dx
d2 erf(x) d erf(x)
-------- = -2x --------
d2x dx
Some cancelling out of terms happens with the second derivative
that make it particularly well-suited to Halley's method.
We start out with a rough approximation for inverf( y), and
then do a root search for y = erf( x) with Halley's method. At
most, four iterations are required, near y = +/- erf_limit. */
static double inverf( const double y)
{
double x, diff;
const double erf_limit = .915;
if( y < -erf_limit)
return( -inverf( -y));
else if( y > erf_limit)
x = sqrt( -log( 1. - y)) - .34;
else /* a passable cubic approximation for -.915 < y < .915 */
x = y * (.8963 + y * y * (.0889 + .494 * y * y));
do
{
const double SQRT_PI =
1.7724538509055160272981674833411451827975494561223871282138077898529113;
const double dy = erf( x) - y;
const double slope = (2. / SQRT_PI) * exp( -x * x);
/* diff = -dy / slope; Just doing this would be Newton-Raphson */
diff = -dy / (slope + x * dy); /* This gets us Halley's method */
x += diff;
}
while( fabs( diff) > 1e-14);
return( x);
}
/* Convert the incoming J2000 vector into the system where the z-axis
is along the observed ray, the x-axis is perpendicular to it and in
the plane of the ecliptic, and the y-axis is perpendicular to both.
In this system, x/z and y/z are decent approximations to the
residuals... which we'll try to minimize in the subsequent code. */
static void rotate_obs_vect( const OBSERVE *obs, double *vect)
{
double sideways[3], xprod[3], x, y, z;
const double r = sqrt( obs->vect[0] * obs->vect[0]
+ obs->vect[1] * obs->vect[1]);
sideways[0] = obs->vect[1] / r;
sideways[1] = -obs->vect[0] / r;
sideways[2] = 0.;
vector_cross_product( xprod, sideways, obs->vect);
/* obs->vect, sideways, xprod now form an orthonormal matrix */
x = dot_product( sideways, vect);
y = dot_product( xprod, vect);
z = dot_product( obs->vect, vect);
*vect++ = x;
*vect++ = y;
*vect++ = z;
}
static inline double pseudo_resid( const double y, const double x)
{
if( y < x && y > -x)
return( y / x);
else
return( 2. - x / fabs(y));
}
static double search_score( const double *loc, const double *deriv, size_t n_obs,
const double sigmas)
{
double rval = 0.;
while( n_obs--)
{
double xyz[3], dx, dy;
size_t i;
for( i = 0; i < 3; i++)
xyz[i] = loc[i] + sigmas * deriv[i];
dx = pseudo_resid( xyz[0], xyz[2]);
dy = pseudo_resid( xyz[1], xyz[2]);
loc += 3;
deriv += 3;
rval += dx * dx + dy * dy;
}
return( rval);
}
double find_parabolic_minimum_point( const double x[3], const double y[3]);
/* Theoretically speaking, this one-dimensional minimization should use
something like Brent's method. But the minimum really is nearly parabolic
here; convergence is quite fast and (nearly) guaranteed. */
static double find_score_minimum( const double *xyz, const double *slopes,
const int n_obs,
const double start_x[3], const double start_y[3], double *xmin)
{
double x[3], y[3];
int iter = 5;
memcpy( x, start_x, 3 * sizeof( double));
memcpy( y, start_y, 3 * sizeof( double));
while( iter--)
{
double new_x = find_parabolic_minimum_point( x, y);
x[0] = x[1];
y[0] = y[1];
x[1] = x[2];
y[1] = y[2];
x[2] = new_x;
y[2] = search_score( xyz, slopes, n_obs, new_x);
}
*xmin = x[2];
return( y[2]);
}
/* The logic for searching for a "best fit" along the line of improvement
is as follows. We sample at N_DIVS points, using the above inverse of
the cumulative error function so that most of the searching is near
the center, with sparser searching toward the tails of the distribution.
If, between those points, we find a minimum "score" (sum of the squares
of the residuals, unweighted), we do a parabolic search for the real
minimum. We may find multiple minima. We take the lowest of them. */
#define N_DIVS 100
double improve_along_lov( double *orbit, const double epoch, const double *lov,
const unsigned n_params, unsigned n_obs, OBSERVE *obs)
{
unsigned i, j;
double x[N_DIVS], score[N_DIVS];
double *xyz, *slopes;
const double delta = 0.0001;
double rval, lowest_score;
while( !obs->is_included && n_obs)
{
n_obs--;
obs++;
}
while( !obs[n_obs - 1].is_included && n_obs)
n_obs--;
if( !n_obs)
return( 0.);
xyz = (double *)calloc( n_obs * 6, sizeof( double));
assert( xyz);
slopes = xyz + n_obs * 3;
for( i = 0; i < n_obs; i++)
for( j = 0; j < 3; j++)
xyz[i * 3 + j] = obs[i].obj_posn[j] - obs[i].obs_posn[j];
for( i = 0; i < n_params; i++)
orbit[i] += delta * lov[i];
set_locs( orbit, epoch, obs, n_obs);
for( i = 0; i < n_obs; i++)
for( j = 0; j < 3; j++)
slopes[i * 3 + j] = obs[i].obj_posn[j] - obs[i].obs_posn[j];
for( i = 0; i < n_obs * 3; i++)
slopes[i] = (slopes[i] - xyz[i]) / delta;
for( i = 0; i < n_obs; i++)
if( obs[i].is_included)
{
rotate_obs_vect( obs + i, xyz + i * 3);
rotate_obs_vect( obs + i, slopes + i * 3);
}
else
{
for( j = 0; j < 3; j++)
xyz[i * 3 + j] = slopes[i * 3 + j] = 0.;
xyz[i * 3 + 2] = 1.;
}
for( i = 0; i < N_DIVS; i++)
{
x[i] = inverf( 2. * ((double)i + .5) / (double)N_DIVS - 1.);
x[i] *= 3.;
score[i] = search_score( xyz, slopes, n_obs, x[i]);
}
i = 0;
while( score[0] < score[1] && score[0] < score[2] && i++ < 20)
{
x[0] += x[0] - x[1];
score[0] = search_score( xyz, slopes, n_obs, x[0]);
}
while( score[N_DIVS - 1] < score[N_DIVS - 2] && score[N_DIVS - 1] < score[N_DIVS - 3]
&& i++ < 20)
{
x[N_DIVS - 1] += x[N_DIVS - 1] - x[N_DIVS - 2];
score[N_DIVS - 1] = search_score( xyz, slopes, n_obs, x[N_DIVS - 1]);
}
rval = 0.;
lowest_score = 1e+200;
for( i = 0; i < N_DIVS - 2; i++)
if( score[i + 1] < score[i] && score[i + 1] < score[i + 2])
{
double new_x;
double new_score = find_score_minimum( xyz, slopes, n_obs,
x + i, score + i, &new_x);
if( lowest_score > new_score)
{
lowest_score = new_score;
rval = new_x;
}
}
for( i = 0; i < n_params; i++)
orbit[i] += (rval - delta) * lov[i];
set_locs( orbit, epoch, obs, n_obs);
free( xyz);
return( rval);
}
double gaussian_random( void); /* monte0.c */
int generate_mc_variant_from_covariance( double *orbit)
{
int i, j;
extern double **eigenvects;
assert( eigenvects);
for( i = 0; i < 6 + n_extra_params; i++)
{
const double g_rand = gaussian_random( );
for( j = 0; j < 6; j++)
orbit[j] += g_rand * eigenvects[i][j];
for( j = 0; j < n_extra_params; j++)
solar_pressure[j] += g_rand * eigenvects[i][j + 6];
}
return( 0);
}