-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKalmanFilter.java
108 lines (89 loc) · 3.47 KB
/
KalmanFilter.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
////////////////////// Kalman Filter framework written based on Python files by Ushahzad - Usman Shahzad /////////////////////////////////
package com.mbsbahru.na568Teamproject_MohammedAlanUsmanBahru;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.CvType;
public class KalmanFilter {
private Mat state;
private int arrDim = 6;
private Mat P;
private Mat Q;
private Mat R;
private Mat F;
private Mat H;
public KalmanFilter(double[] initialState, double[] processNoiseStd, double[] measurementNoiseStd) {
state = new Mat(arrDim, 1, CvType.CV_64F);
state.put(0, 0, initialState);
P = Mat.eye(arrDim, arrDim, CvType.CV_64F);
Q = Mat.zeros(arrDim, arrDim, CvType.CV_64F);
R = Mat.zeros(arrDim, arrDim, CvType.CV_64F);
for (int i = 0; i < arrDim; i++) {
Q.put(i, i, processNoiseStd[i] * processNoiseStd[i]);
R.put(i, i, measurementNoiseStd[i] * measurementNoiseStd[i]);
}
F = Mat.eye(arrDim, arrDim, CvType.CV_64F);
H = Mat.eye(arrDim, arrDim, CvType.CV_64F);
}
public void predict() {
Mat F_transposed = new Mat();
Core.transpose(F, F_transposed);
Mat temp = new Mat();
Core.gemm(F, state, 1, new Mat(), 0, temp);
state = temp.clone();
Core.gemm(F, P, 1, new Mat(), 0, temp); // Matrix multiplication: temp = F * P
Core.gemm(temp, F_transposed, 1, new Mat(), 0, P); // Matrix multiplication: P = temp * F_transposed
Core.add(P, Q, P);
}
public void correction(double[] measurement) {
Mat y = new Mat(arrDim, 1, CvType.CV_64F);
y.put(0, 0, measurement);
if (state.rows() != arrDim || state.cols() != 1) {
System.out.println("State matrix has incorrect dimensions.");
return;
}
Mat measurementMat = new Mat();
Core.gemm(H, state, 1, new Mat(), 0, measurementMat);
Core.subtract(y, measurementMat, y);
Mat Ht = new Mat();
Core.transpose(H, Ht);
Mat PHt = new Mat();
Core.gemm(P, Ht, 1, new Mat(), 0, PHt);
Mat S = new Mat();
Core.gemm(H, PHt, 1, new Mat(), 0, S);
Core.add(S, R, S);
Mat S_inv = S.inv(Core.DECOMP_SVD);
Mat K = new Mat();
Core.gemm(PHt, S_inv, 1, new Mat(), 0, K);
Mat Ky = new Mat();
Core.gemm(K, y, 1, new Mat(), 0, Ky);
Core.add(state, Ky, state);
Mat KH = new Mat();
Core.gemm(K, H, 1, new Mat(), 0, KH);
Mat I = Mat.eye(P.rows(), P.cols(), CvType.CV_64F);
Mat temp = new Mat();
Core.subtract(I, KH, temp);
Core.gemm(temp, P, 1, new Mat(), 0, P);
}
public double[] getState() {
return new double[]{
state.get(0, 0)[0],
state.get(1, 0)[0],
state.get(2, 0)[0],
state.get(3, 0)[0],
state.get(4, 0)[0],
state.get(5, 0)[0],
};
}
public void setProcessNoiseStd(double[] processNoiseStd) {
for (int i = 0; i < processNoiseStd.length; i++) {
double variance = Math.pow(processNoiseStd[i], 2);
Q.put(i, i, variance*0.5);
}
}
public void setMeasurementNoiseStd(double[] measurementNoiseStd) {
for (int i = 0; i < measurementNoiseStd.length; i++) {
double variance = Math.pow(measurementNoiseStd[i], 2);
R.put(i, i, variance*0.5);
}
}
}