forked from AI-secure/DecodingTrust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
401 lines (362 loc) · 17.2 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import time
import warnings
import shortuuid
from tqdm import tqdm
from utils import timeout
from abc import ABC, abstractmethod
from typing import List, Dict, Union
from helm.common.request import Request
from conversation import get_conv_template
from helm.proxy.clients.auto_client import AutoClient
class Chat(ABC):
def __init__(self, model_name, model_type: str, prompt_price: float, completion_price: float):
self.model_name = model_name
self.model_type = model_type
self.prompt_price = prompt_price
self.completion_price = completion_price
@staticmethod
def from_helm(model_name: str, **kwargs):
if model_name.lower().startswith("openai/"):
return OpenAIChat(model_name, **kwargs)
elif model_name.startswith("hf/"):
return HFChat(model_name.replace("hf/", ""), **kwargs)
def calc_price(self, response):
s = 0
s += response["usage"]["prompt_tokens"] * self.prompt_price
s += response["usage"]["completion_tokens"] * self.completion_price
return s
def do_classification(self, dataset, task_message, example_prefix=False, dry_run=False):
"""
Do classification (zero-shot or in-context learning by calling `openai.ChatCompletion.create`. Args: dataset
(`List[Dict]`): test dataset to evaluate. Each item should be a dict containing the following keys: `input`:
text input of the test instance `label`: label of the instance `option`: candidate label choices of the task
`examples` (`List[Tuple]`): demonstration examples (text, label). Set as `[]` for zero-shot evaluation.
Please refer to `example_snli` for more information. task_message (`String`): task description for the test
dataset (`dataset`). It should contain the answer choice. example_prefix (`Bool`): Whether to put the
demonstration examples into the `system` messages. Only work for in-context learning. May set
`example_prefix=True` when evaluating GPT-4.
"""
cache = []
acc = 0
unknown = 0
cost = 0
prompt_tokens = 0
cont_tokens = 0
try:
for x in tqdm(dataset):
# messages = [{"role": "system", "content": system_message}]
if len(x["examples"]) == 0:
messages = [{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": task_message + "\n" + x["input"]}]
else:
if example_prefix:
messages = [{"role": "system",
"content": "You are a helpful, pattern-following assistant. " + task_message}]
else:
messages = [{"role": "system", "content": "You are a helpful, pattern-following assistant."},
{"role": "user", "content": task_message},
{"role": "assistant", "content": "Sure, I'd be happy to!"}]
for y in x["examples"]:
if example_prefix:
messages.append({"role": "system", "name": "example_user", "content": y[0]})
messages.append(
{"role": "system", "name": "example_assistant", "content": y[1].capitalize()}),
else:
messages.append({"role": "user", "content": y[0]})
messages.append({"role": "assistant", "content": y[1].capitalize()}),
messages.append({"role": "user", "content": x["input"]})
response = self.call(messages, dry_run=dry_run)
cost += self.calc_price(response)
prompt_tokens += response["usage"]["prompt_tokens"]
cont_tokens += response["usage"]["completion_tokens"]
pred = response['choices'][0]['message']['content']
pred = pred.lower()
if pred.startswith("answer:"):
pred = pred[7:]
if pred.find("</s>")!=-1:
pred = pred.split("</s>")[0]
if pred.find("<|im_end|>")!=-1:
pred = pred.split("<|im_end|>")[0]
pred = pred.strip()
# We consider if the model generates explanations after the answer choice.
pre = pred.split(".")[0].strip()
pre = pre.split(",")[0].strip()
pre = pre.split("\n")[0].strip()
cache.append((messages, response))
if pred == x["label"] or pre == x["label"]:
acc += 1
elif pred not in x["option"] and pre not in x["option"]:
unknown += 1
except Exception as e:
print(e)
if len(cache) == 0:
return None, None, 0, []
else:
return acc / len(cache), unknown, cost, cache
return acc / len(dataset), unknown, (cost, prompt_tokens, cont_tokens), cache
def do_generation(self, dataset, message_constructor, n=1, t=1, max_tokens=150, dry_run=False):
"""
Do text generation by calling `openai.ChatCompletion.create`
Args:
dataset (`List[str]`): test dataset to evaluate. Each item should be a text prompt.
message_constructor (`MessageConstrctor`): format the input prompts tailer for GPT-3.5 and GPT-4
n (int): number of generations given the same prompt
t (int): generation temperature
max_tokens: max number of tokens to generate
"""
cache = []
cost = 0
prompt_tokens = 0
cont_tokens = 0
try:
for i, x in tqdm(enumerate(dataset)):
if self.model_type == "completion":
messages = x
else:
messages = message_constructor.get_message(x)
response = self.call(messages, max_tokens=max_tokens, n=n, t=t, dry_run=dry_run)
if dry_run:
print(messages)
print(response)
if "message" in response["choices"][0]:
continuation = response["choices"][0]["message"]["content"]
else:
continuation = response["choices"][0]["text"]
is_banned = continuation.find("it contains inappropriate language.") != -1
cost += self.calc_price(response)
prompt_tokens += response["usage"]["prompt_tokens"]
cont_tokens += response["usage"]["completion_tokens"]
cache.append((messages, continuation, is_banned, x, response))
if i < 5:
print(messages)
print(response["choices"])
print("=" * 25)
except Exception as e:
print(e)
if len(cache) == 0:
return (0,0,0), []
return (cost, prompt_tokens, cont_tokens), cache
@abstractmethod
def _call(self, messages, t=0, max_tokens=20, n=1):
pass
def call(self, messages, t=0, retry=1000, max_tokens=20, n=1, dry_run=False):
"""
A robust implementation for calling `openai.ChatCompletion.create`.
Args:
messages: messages conveyed to OpenAI.
t: temperature. Set t=0 will make the outputs mostly deterministic.
n: How many chat completion choices to generate for each input message.
max_tokens: maximum tokens to generate for chat completion.
Please look at https://platform.openai.com/docs/api-reference/chat/create for more information.
[TODO] We may add all arguments of `openai.ChatCompletion.create` here.
retry: for sake of Error on OpenAI side, we try `retry + 1` times for a request if we do not get a response.
dry_run: call the fake api to calculate the prices
"""
if dry_run:
return self.dry_run(messages, t, max_tokens, n)
response = None
for i in range(retry + 1):
try:
response = self._call(messages, t, max_tokens, n)
break
except TimeoutError:
print(f"Seemingly openai is frozen, wait {i + 1}s and retry")
time.sleep(i + 1)
except Exception as e:
print("Error:", e)
print(type(e))
print(f"wait {i + 1}s and retry")
time.sleep(i + 1)
if response is None:
print(f"try {retry + 1} but still no response, return None")
return response
def num_tokens_from_messages(self, messages, model="gpt-3.5-turbo-0613"):
"""Return the number of tokens used by a list of messages."""
model = model.replace("openai/", "")
import tiktoken
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return self.num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return self.num_tokens_from_messages(messages, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value,allowed_special={'<|endoftext|>'}))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def dry_run(self, messages, t=0, max_tokens=20, n=1):
# TODO: Refactor with pydantic
return {
"id": f"chatcmpl-{shortuuid.random()}",
"object": "chat.completion",
"created": int(time.time()),
"model": "dryrun-" + self.model_name,
"choices": [
{
"index": i,
"message": {
"role": "assistant",
"content": "test " * max_tokens
},
"finish_reason": "length"
}
for i in range(n)
],
"usage": { # Not implemented for now
"prompt_tokens": self.num_tokens_from_messages(messages, self.model_name),
"completion_tokens": max_tokens * n,
"total_tokens": self.num_tokens_from_messages(messages, self.model_name) + max_tokens * n
}
}
class OpenAIChat(Chat):
def __init__(self, model_name, cache, api_key, **kwargs):
# TODO: Too ugly - needs refactoring
model_type = "chat"
if model_name.find("gpt-4") != -1:
print("Suppose it supports 8k context")
print("Pricing (prompt): 0.03 / 1k tokens")
print("Pricing (completion): 0.06 / 1k tokens")
prompt_price = 0.03 / 1000
completion_price = 0.06 / 1000
elif model_name.find("gpt-3.5") != -1:
print("Pricing: 0.002 / 1k tokens")
prompt_price = 0.002 / 1000
completion_price = 0.002 / 1000
elif model_name.find("ada") != -1:
print("Pricing: 0.002 / 1k tokens")
prompt_price = 0.0004 / 1000
completion_price = 0.0004 / 1000
model_type = "completion"
elif model_name.find("curie") != -1:
print("Pricing: 0.002 / 1k tokens")
prompt_price = 0.002 / 1000
completion_price = 0.002 / 1000
model_type = "completion"
elif model_name.find("davinci") != -1:
print("Pricing: 0.002 / 1k tokens")
prompt_price = 0.02 / 1000
completion_price = 0.02 / 1000
model_type = "completion"
else:
print("Unknown OpenAI model, use 0.002 / 1k tokens as default pricing")
prompt_price = 0.002 / 1000
completion_price = 0.002 / 1000
super().__init__(model_name, model_type, prompt_price, completion_price)
self.credentials = {"openaiApiKey": api_key}
self.client = AutoClient(credentials=self.credentials, cache_path=cache)
if "conv_template" in kwargs:
warnings.warn("Argument 'conv_template' ignored for OpenAI models")
@timeout(600)
def _call(self, messages, t=0, max_tokens=20, n=1):
kwargs = {
"model": self.model_name,
"temperature": t,
"max_tokens": max_tokens,
"num_completions": n,
}
if self.model_name.startswith("openai/gpt-3.5") or self.model_name.startswith("openai/gpt-4"):
# Chat model
kwargs["messages"] = messages
else:
# Completion model
kwargs["prompt"] = messages
request = Request(**kwargs)
response = self.client.make_request(request)
# if not response.success:
# raise RuntimeError(f"Call to OpenAI model {self.model_name} failed!")
return response.raw_response
class HFChat(Chat):
def __init__(self, model_name: str, conv_template: str, cache: str, **kwargs):
super().__init__(model_name, model_type=kwargs.get("model_type", "chat"), prompt_price=0, completion_price=0)
try:
from helm.proxy.clients.huggingface_model_registry import register_huggingface_hub_model_config
register_huggingface_hub_model_config(self.model_name)
except ValueError as e:
print(e)
self.client = AutoClient(credentials={}, cache_path=cache)
self.conv_template = get_conv_template(conv_template)
def messages_to_prompt(self, messages: Union[List[Dict], str]):
if isinstance(messages, str):
return messages # Override prompt templates / simply use as the prompt for completion model
conv = self.conv_template.copy()
for message in messages:
if "name" in message:
warnings.warn("'name' argument is not supported.")
msg_role = message["role"]
if msg_role == "system":
conv.system = message["content"]
elif msg_role == "user":
conv.append_message(conv.roles[0], message["content"])
elif msg_role == "assistant":
conv.append_message(conv.roles[1], message["content"])
else:
raise ValueError(f"Unknown role: {msg_role}")
conv.append_message(conv.roles[1], None)
return conv.get_prompt() # Prompt generated from the selected template
def post_process_generation(self, generation: str):
if self.conv_template.stop_str:
return generation[:generation.find(self.conv_template.stop_str)]
else:
return generation
@timeout(600)
def _call(self, messages, t=0, max_tokens=20, n=1):
prompt = self.messages_to_prompt(messages)
kwargs = {}
if self.conv_template.stop_token_ids:
kwargs["stop_token_ids"] = self.conv_template.stop_token_ids
request = Request(
model=self.model_name, prompt=prompt, num_completions=n, max_tokens=max_tokens, temperature=t, **kwargs
)
response = self.client.make_request(request)
if not response.success:
raise RuntimeError(f"Call to huggingface hub model {self.model_name} failed!")
# TODO: Refactor with pydantic
return {
"id": f"chatcmpl-{shortuuid.random()}",
"object": "chat.completion",
"created": int(time.time()),
"model": self.model_name,
"choices": [
{
"index": i,
"message": {
"role": "assistant",
"content": self.post_process_generation(msg.text)
},
"finish_reason": msg.finish_reason
}
for i, msg in enumerate(response.completions)
],
"usage": { # Not implemented for now
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}