-
Notifications
You must be signed in to change notification settings - Fork 7.5k
/
Copy pathui.py
585 lines (520 loc) · 23.8 KB
/
ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"""This file should be imported if and only if you want to run the UI locally."""
import base64
import logging
import time
from collections.abc import Iterable
from enum import Enum
from pathlib import Path
from typing import Any
import gradio as gr # type: ignore
from fastapi import FastAPI
from gradio.themes.utils.colors import slate # type: ignore
from injector import inject, singleton
from llama_index.core.llms import ChatMessage, ChatResponse, MessageRole
from llama_index.core.types import TokenGen
from pydantic import BaseModel
from private_gpt.constants import PROJECT_ROOT_PATH
from private_gpt.di import global_injector
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.server.chat.chat_service import ChatService, CompletionGen
from private_gpt.server.chunks.chunks_service import Chunk, ChunksService
from private_gpt.server.ingest.ingest_service import IngestService
from private_gpt.server.recipes.summarize.summarize_service import SummarizeService
from private_gpt.settings.settings import settings
from private_gpt.ui.images import logo_svg
logger = logging.getLogger(__name__)
THIS_DIRECTORY_RELATIVE = Path(__file__).parent.relative_to(PROJECT_ROOT_PATH)
# Should be "private_gpt/ui/avatar-bot.ico"
AVATAR_BOT = THIS_DIRECTORY_RELATIVE / "avatar-bot.ico"
UI_TAB_TITLE = "My Private GPT"
SOURCES_SEPARATOR = "<hr>Sources: \n"
class Modes(str, Enum):
RAG_MODE = "RAG"
SEARCH_MODE = "Search"
BASIC_CHAT_MODE = "Basic"
SUMMARIZE_MODE = "Summarize"
MODES: list[Modes] = [
Modes.RAG_MODE,
Modes.SEARCH_MODE,
Modes.BASIC_CHAT_MODE,
Modes.SUMMARIZE_MODE,
]
class Source(BaseModel):
file: str
page: str
text: str
class Config:
frozen = True
@staticmethod
def curate_sources(sources: list[Chunk]) -> list["Source"]:
curated_sources = []
for chunk in sources:
doc_metadata = chunk.document.doc_metadata
file_name = doc_metadata.get("file_name", "-") if doc_metadata else "-"
page_label = doc_metadata.get("page_label", "-") if doc_metadata else "-"
source = Source(file=file_name, page=page_label, text=chunk.text)
curated_sources.append(source)
curated_sources = list(
dict.fromkeys(curated_sources).keys()
) # Unique sources only
return curated_sources
@singleton
class PrivateGptUi:
@inject
def __init__(
self,
ingest_service: IngestService,
chat_service: ChatService,
chunks_service: ChunksService,
summarizeService: SummarizeService,
) -> None:
self._ingest_service = ingest_service
self._chat_service = chat_service
self._chunks_service = chunks_service
self._summarize_service = summarizeService
# Cache the UI blocks
self._ui_block = None
self._selected_filename = None
# Initialize system prompt based on default mode
self.mode = MODES[0]
self._system_prompt = self._get_default_system_prompt(self.mode)
def _chat(
self, message: str, history: list[list[str]], mode: Modes, *_: Any
) -> Any:
def yield_deltas(completion_gen: CompletionGen) -> Iterable[str]:
full_response: str = ""
stream = completion_gen.response
for delta in stream:
if isinstance(delta, str):
full_response += str(delta)
elif isinstance(delta, ChatResponse):
full_response += delta.delta or ""
yield full_response
time.sleep(0.02)
if completion_gen.sources:
full_response += SOURCES_SEPARATOR
cur_sources = Source.curate_sources(completion_gen.sources)
sources_text = "\n\n\n"
used_files = set()
for index, source in enumerate(cur_sources, start=1):
if f"{source.file}-{source.page}" not in used_files:
sources_text = (
sources_text
+ f"{index}. {source.file} (page {source.page}) \n\n"
)
used_files.add(f"{source.file}-{source.page}")
sources_text += "<hr>\n\n"
full_response += sources_text
yield full_response
def yield_tokens(token_gen: TokenGen) -> Iterable[str]:
full_response: str = ""
for token in token_gen:
full_response += str(token)
yield full_response
def build_history() -> list[ChatMessage]:
history_messages: list[ChatMessage] = []
for interaction in history:
history_messages.append(
ChatMessage(content=interaction[0], role=MessageRole.USER)
)
if len(interaction) > 1 and interaction[1] is not None:
history_messages.append(
ChatMessage(
# Remove from history content the Sources information
content=interaction[1].split(SOURCES_SEPARATOR)[0],
role=MessageRole.ASSISTANT,
)
)
# max 20 messages to try to avoid context overflow
return history_messages[-20:]
new_message = ChatMessage(content=message, role=MessageRole.USER)
all_messages = [*build_history(), new_message]
# If a system prompt is set, add it as a system message
if self._system_prompt:
all_messages.insert(
0,
ChatMessage(
content=self._system_prompt,
role=MessageRole.SYSTEM,
),
)
match mode:
case Modes.RAG_MODE:
# Use only the selected file for the query
context_filter = None
if self._selected_filename is not None:
docs_ids = []
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata["file_name"]
== self._selected_filename
):
docs_ids.append(ingested_document.doc_id)
context_filter = ContextFilter(docs_ids=docs_ids)
query_stream = self._chat_service.stream_chat(
messages=all_messages,
use_context=True,
context_filter=context_filter,
)
yield from yield_deltas(query_stream)
case Modes.BASIC_CHAT_MODE:
llm_stream = self._chat_service.stream_chat(
messages=all_messages,
use_context=False,
)
yield from yield_deltas(llm_stream)
case Modes.SEARCH_MODE:
response = self._chunks_service.retrieve_relevant(
text=message, limit=4, prev_next_chunks=0
)
sources = Source.curate_sources(response)
yield "\n\n\n".join(
f"{index}. **{source.file} "
f"(page {source.page})**\n "
f"{source.text}"
for index, source in enumerate(sources, start=1)
)
case Modes.SUMMARIZE_MODE:
# Summarize the given message, optionally using selected files
context_filter = None
if self._selected_filename:
docs_ids = []
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata["file_name"]
== self._selected_filename
):
docs_ids.append(ingested_document.doc_id)
context_filter = ContextFilter(docs_ids=docs_ids)
summary_stream = self._summarize_service.stream_summarize(
use_context=True,
context_filter=context_filter,
instructions=message,
)
yield from yield_tokens(summary_stream)
# On initialization and on mode change, this function set the system prompt
# to the default prompt based on the mode (and user settings).
@staticmethod
def _get_default_system_prompt(mode: Modes) -> str:
p = ""
match mode:
# For query chat mode, obtain default system prompt from settings
case Modes.RAG_MODE:
p = settings().ui.default_query_system_prompt
# For chat mode, obtain default system prompt from settings
case Modes.BASIC_CHAT_MODE:
p = settings().ui.default_chat_system_prompt
# For summarization mode, obtain default system prompt from settings
case Modes.SUMMARIZE_MODE:
p = settings().ui.default_summarization_system_prompt
# For any other mode, clear the system prompt
case _:
p = ""
return p
@staticmethod
def _get_default_mode_explanation(mode: Modes) -> str:
match mode:
case Modes.RAG_MODE:
return "Get contextualized answers from selected files."
case Modes.SEARCH_MODE:
return "Find relevant chunks of text in selected files."
case Modes.BASIC_CHAT_MODE:
return "Chat with the LLM using its training data. Files are ignored."
case Modes.SUMMARIZE_MODE:
return "Generate a summary of the selected files. Prompt to customize the result."
case _:
return ""
def _set_system_prompt(self, system_prompt_input: str) -> None:
logger.info(f"Setting system prompt to: {system_prompt_input}")
self._system_prompt = system_prompt_input
def _set_explanatation_mode(self, explanation_mode: str) -> None:
self._explanation_mode = explanation_mode
def _set_current_mode(self, mode: Modes) -> Any:
self.mode = mode
self._set_system_prompt(self._get_default_system_prompt(mode))
self._set_explanatation_mode(self._get_default_mode_explanation(mode))
interactive = self._system_prompt is not None
return [
gr.update(placeholder=self._system_prompt, interactive=interactive),
gr.update(value=self._explanation_mode),
]
def _list_ingested_files(self) -> list[list[str]]:
files = set()
for ingested_document in self._ingest_service.list_ingested():
if ingested_document.doc_metadata is None:
# Skipping documents without metadata
continue
file_name = ingested_document.doc_metadata.get(
"file_name", "[FILE NAME MISSING]"
)
files.add(file_name)
return [[row] for row in files]
def _upload_file(self, files: list[str]) -> None:
logger.debug("Loading count=%s files", len(files))
paths = [Path(file) for file in files]
# remove all existing Documents with name identical to a new file upload:
file_names = [path.name for path in paths]
doc_ids_to_delete = []
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata
and ingested_document.doc_metadata["file_name"] in file_names
):
doc_ids_to_delete.append(ingested_document.doc_id)
if len(doc_ids_to_delete) > 0:
logger.info(
"Uploading file(s) which were already ingested: %s document(s) will be replaced.",
len(doc_ids_to_delete),
)
for doc_id in doc_ids_to_delete:
self._ingest_service.delete(doc_id)
self._ingest_service.bulk_ingest([(str(path.name), path) for path in paths])
def _delete_all_files(self) -> Any:
ingested_files = self._ingest_service.list_ingested()
logger.debug("Deleting count=%s files", len(ingested_files))
for ingested_document in ingested_files:
self._ingest_service.delete(ingested_document.doc_id)
return [
gr.List(self._list_ingested_files()),
gr.components.Button(interactive=False),
gr.components.Button(interactive=False),
gr.components.Textbox("All files"),
]
def _delete_selected_file(self) -> Any:
logger.debug("Deleting selected %s", self._selected_filename)
# Note: keep looping for pdf's (each page became a Document)
for ingested_document in self._ingest_service.list_ingested():
if (
ingested_document.doc_metadata
and ingested_document.doc_metadata["file_name"]
== self._selected_filename
):
self._ingest_service.delete(ingested_document.doc_id)
return [
gr.List(self._list_ingested_files()),
gr.components.Button(interactive=False),
gr.components.Button(interactive=False),
gr.components.Textbox("All files"),
]
def _deselect_selected_file(self) -> Any:
self._selected_filename = None
return [
gr.components.Button(interactive=False),
gr.components.Button(interactive=False),
gr.components.Textbox("All files"),
]
def _selected_a_file(self, select_data: gr.SelectData) -> Any:
self._selected_filename = select_data.value
return [
gr.components.Button(interactive=True),
gr.components.Button(interactive=True),
gr.components.Textbox(self._selected_filename),
]
def _build_ui_blocks(self) -> gr.Blocks:
logger.debug("Creating the UI blocks")
with gr.Blocks(
title=UI_TAB_TITLE,
theme=gr.themes.Soft(primary_hue=slate),
css=".logo { "
"display:flex;"
"background-color: #C7BAFF;"
"height: 80px;"
"border-radius: 8px;"
"align-content: center;"
"justify-content: center;"
"align-items: center;"
"}"
".logo img { height: 25% }"
".contain { display: flex !important; flex-direction: column !important; }"
"#component-0, #component-3, #component-10, #component-8 { height: 100% !important; }"
"#chatbot { flex-grow: 1 !important; overflow: auto !important;}"
"#col { height: calc(100vh - 112px - 16px) !important; }"
"hr { margin-top: 1em; margin-bottom: 1em; border: 0; border-top: 1px solid #FFF; }"
".avatar-image { background-color: antiquewhite; border-radius: 2px; }"
".footer { text-align: center; margin-top: 20px; font-size: 14px; display: flex; align-items: center; justify-content: center; }"
".footer-zylon-link { display:flex; margin-left: 5px; text-decoration: auto; color: var(--body-text-color); }"
".footer-zylon-link:hover { color: #C7BAFF; }"
".footer-zylon-ico { height: 20px; margin-left: 5px; background-color: antiquewhite; border-radius: 2px; }",
) as blocks:
with gr.Row():
gr.HTML(f"<div class='logo'/><img src={logo_svg} alt=PrivateGPT></div")
with gr.Row(equal_height=False):
with gr.Column(scale=3):
default_mode = MODES[0]
mode = gr.Radio(
[mode.value for mode in MODES],
label="Mode",
value=default_mode,
)
explanation_mode = gr.Textbox(
placeholder=self._get_default_mode_explanation(default_mode),
show_label=False,
max_lines=3,
interactive=False,
)
upload_button = gr.components.UploadButton(
"Upload File(s)",
type="filepath",
file_count="multiple",
size="sm",
)
ingested_dataset = gr.List(
self._list_ingested_files,
headers=["File name"],
label="Ingested Files",
height=235,
interactive=False,
render=False, # Rendered under the button
)
upload_button.upload(
self._upload_file,
inputs=upload_button,
outputs=ingested_dataset,
)
ingested_dataset.change(
self._list_ingested_files,
outputs=ingested_dataset,
)
ingested_dataset.render()
deselect_file_button = gr.components.Button(
"De-select selected file", size="sm", interactive=False
)
selected_text = gr.components.Textbox(
"All files", label="Selected for Query or Deletion", max_lines=1
)
delete_file_button = gr.components.Button(
"🗑️ Delete selected file",
size="sm",
visible=settings().ui.delete_file_button_enabled,
interactive=False,
)
delete_files_button = gr.components.Button(
"⚠️ Delete ALL files",
size="sm",
visible=settings().ui.delete_all_files_button_enabled,
)
deselect_file_button.click(
self._deselect_selected_file,
outputs=[
delete_file_button,
deselect_file_button,
selected_text,
],
)
ingested_dataset.select(
fn=self._selected_a_file,
outputs=[
delete_file_button,
deselect_file_button,
selected_text,
],
)
delete_file_button.click(
self._delete_selected_file,
outputs=[
ingested_dataset,
delete_file_button,
deselect_file_button,
selected_text,
],
)
delete_files_button.click(
self._delete_all_files,
outputs=[
ingested_dataset,
delete_file_button,
deselect_file_button,
selected_text,
],
)
system_prompt_input = gr.Textbox(
placeholder=self._system_prompt,
label="System Prompt",
lines=2,
interactive=True,
render=False,
)
# When mode changes, set default system prompt, and other stuffs
mode.change(
self._set_current_mode,
inputs=mode,
outputs=[system_prompt_input, explanation_mode],
)
# On blur, set system prompt to use in queries
system_prompt_input.blur(
self._set_system_prompt,
inputs=system_prompt_input,
)
def get_model_label() -> str | None:
"""Get model label from llm mode setting YAML.
Raises:
ValueError: If an invalid 'llm_mode' is encountered.
Returns:
str: The corresponding model label.
"""
# Get model label from llm mode setting YAML
# Labels: local, openai, openailike, sagemaker, mock, ollama
config_settings = settings()
if config_settings is None:
raise ValueError("Settings are not configured.")
# Get llm_mode from settings
llm_mode = config_settings.llm.mode
# Mapping of 'llm_mode' to corresponding model labels
model_mapping = {
"llamacpp": config_settings.llamacpp.llm_hf_model_file,
"openai": config_settings.openai.model,
"openailike": config_settings.openai.model,
"azopenai": config_settings.azopenai.llm_model,
"sagemaker": config_settings.sagemaker.llm_endpoint_name,
"mock": llm_mode,
"ollama": config_settings.ollama.llm_model,
"gemini": config_settings.gemini.model,
}
if llm_mode not in model_mapping:
print(f"Invalid 'llm mode': {llm_mode}")
return None
return model_mapping[llm_mode]
with gr.Column(scale=7, elem_id="col"):
# Determine the model label based on the value of PGPT_PROFILES
model_label = get_model_label()
if model_label is not None:
label_text = (
f"LLM: {settings().llm.mode} | Model: {model_label}"
)
else:
label_text = f"LLM: {settings().llm.mode}"
_ = gr.ChatInterface(
self._chat,
chatbot=gr.Chatbot(
label=label_text,
show_copy_button=True,
elem_id="chatbot",
render=False,
avatar_images=(
None,
AVATAR_BOT,
),
),
additional_inputs=[mode, upload_button, system_prompt_input],
)
with gr.Row():
avatar_byte = AVATAR_BOT.read_bytes()
f_base64 = f"data:image/png;base64,{base64.b64encode(avatar_byte).decode('utf-8')}"
gr.HTML(
f"<div class='footer'><a class='footer-zylon-link' href='https://zylon.ai/'>Maintained by Zylon <img class='footer-zylon-ico' src='{f_base64}' alt=Zylon></a></div>"
)
return blocks
def get_ui_blocks(self) -> gr.Blocks:
if self._ui_block is None:
self._ui_block = self._build_ui_blocks()
return self._ui_block
def mount_in_app(self, app: FastAPI, path: str) -> None:
blocks = self.get_ui_blocks()
blocks.queue()
logger.info("Mounting the gradio UI, at path=%s", path)
gr.mount_gradio_app(app, blocks, path=path, favicon_path=AVATAR_BOT)
if __name__ == "__main__":
ui = global_injector.get(PrivateGptUi)
_blocks = ui.get_ui_blocks()
_blocks.queue()
_blocks.launch(debug=False, show_api=False)