The goal of tiltPlot is to provide plots for the TILT project.
You can install the development version of tiltPlot from GitHub with:
# install.packages("pak")
pak::pak("2DegreesInvesting/tiltPlot")library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(tiltPlot)financial
#> # A tibble: 264 × 23
#> bank_id amount_total company_name postcode benchmark ep_product
#> <chr> <int> <chr> <int> <chr> <chr>
#> 1 bank_a 1000 tilman 12043 all car
#> 2 bank_a 1000 tilman 12043 all tractor
#> 3 bank_a 1000 tilman 12043 all steel
#> 4 bank_a 1000 tilman 12043 all car
#> 5 bank_a 1000 tilman 12043 all tractor
#> 6 bank_a 1000 tilman 12043 all steel
#> 7 bank_a 1000 tilman 12043 all car
#> 8 bank_a 1000 tilman 12043 all tractor
#> 9 bank_a 1000 tilman 12043 all steel
#> 10 bank_a 1000 tilman 12043 all car
#> # ℹ 254 more rows
#> # ℹ 17 more variables: co2_footprint_product <dbl>, tilt_sector <chr>,
#> # tilt_subsector <chr>, isic_4digit <int>, isic_4digit_name <chr>,
#> # amount_of_distinct_products <int>, equal_weight_finance <dbl>,
#> # worst_case_finance <int>, best_case_finance <int>, emission_profile <chr>,
#> # profile_ranking <dbl>, sector_profile <chr>, scenario <chr>, year <int>,
#> # reduction_targets <dbl>, transition_risk_score <dbl>, …fin <- financial
benchmark <- "tilt_sector"
mode <- "equal_weight"
plot_sankey(fin, with_company = TRUE, benchmark = "tilt_sector", mode = "equal_weight") +
ggtitle(
"Sankey Plot",
paste("Stratified by the amount of loan by the bank, with the", mode, "mode", "and benchmark", benchmark)
)You can also choose to have the plot without the company node.
plot_sankey(fin, with_company = FALSE, benchmark = "tilt_sector", mode = "equal_weight")Finally, the user can choose different modes to plot the Sankey plot with financial data available.
plot_sankey(fin, with_company = FALSE, benchmark = "tilt_sector", mode = "best_case")financial
#> # A tibble: 264 × 23
#> bank_id amount_total company_name postcode benchmark ep_product
#> <chr> <int> <chr> <int> <chr> <chr>
#> 1 bank_a 1000 tilman 12043 all car
#> 2 bank_a 1000 tilman 12043 all tractor
#> 3 bank_a 1000 tilman 12043 all steel
#> 4 bank_a 1000 tilman 12043 all car
#> 5 bank_a 1000 tilman 12043 all tractor
#> 6 bank_a 1000 tilman 12043 all steel
#> 7 bank_a 1000 tilman 12043 all car
#> 8 bank_a 1000 tilman 12043 all tractor
#> 9 bank_a 1000 tilman 12043 all steel
#> 10 bank_a 1000 tilman 12043 all car
#> # ℹ 254 more rows
#> # ℹ 17 more variables: co2_footprint_product <dbl>, tilt_sector <chr>,
#> # tilt_subsector <chr>, isic_4digit <int>, isic_4digit_name <chr>,
#> # amount_of_distinct_products <int>, equal_weight_finance <dbl>,
#> # worst_case_finance <int>, best_case_finance <int>, emission_profile <chr>,
#> # profile_ranking <dbl>, sector_profile <chr>, scenario <chr>, year <int>,
#> # reduction_targets <dbl>, transition_risk_score <dbl>, …On a company level:
fin <- financial
benchmarks <- c("all", "unit")
fin |>
filter(company_name == "tilman") |>
bar_plot_emission_profile_financial(benchmarks, mode = "equal_weight") +
labs(title = "Emission profile of all products on a company level, on an equal
weight financial mode")On a portfolio level:
bar_plot_emission_profile_financial(fin, benchmarks, mode = "equal_weight") +
labs(title = "Emission profile of all products on a portfolio level, on an equal
weight financial mode")without_financial
#> # A tibble: 252 × 35
#> companies_id country postcode main_activity ep_product activity_uuid_produc…¹
#> <chr> <chr> <int> <chr> <chr> <chr>
#> 1 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 2 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 3 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 4 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 5 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 6 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 7 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 8 %ef%bb%bfma… germany 12043 wholesaler surface c… a62eb0d6-9120-541c-97…
#> 9 %ef%bb%bfma… germany 12043 wholesaler hand tool… 7c082396-1f14-5674-86…
#> 10 %ef%bb%bfma… germany 12043 wholesaler hand tool… 7c082396-1f14-5674-86…
#> # ℹ 242 more rows
#> # ℹ abbreviated name: ¹activity_uuid_product_uuid
#> # ℹ 29 more variables: matched_activity_name <chr>,
#> # matched_reference_product <chr>, unit <chr>, co2e_lower <dbl>,
#> # co2e_upper <dbl>, emission_profile <chr>, benchmark <chr>,
#> # profile_ranking <dbl>, tilt_sector <chr>, tilt_subsector <chr>,
#> # sector_profile <chr>, scenario <chr>, year <int>, …Plot on a company level. The user can choose any number of benchmark to be plotted.
no_fin <- without_financial
benchmarks <- c("unit", "unit_tilt_sector")
company_name <- no_fin$companies_id[1]
no_fin |>
filter(companies_id == company_name) |>
bar_plot_emission_profile(benchmarks, mode = "equal_weight", scenario = "1.5C RPS", year = 2030) +
labs(title = "Emission profile of all products on a company level")Plot on a portfolio level.
bar_plot_emission_profile(no_fin, benchmarks, mode = "equal_weight", scenario = "1.5C RPS", year = 2030) +
labs(title = "Emission profile of all products on a portfolio level")fin <- financial
scenario <- "IPR"
year <- 2030
benchmarks <- c("all", "unit")
mode <- "best_case"
scatter_plot_financial(fin,
benchmarks = benchmarks,
mode = mode,
scenario = scenario,
year = year
)Different modes can be chosen: “equal_weight”, “worst_case” and “best_case”. If nothing is chosen, equal_weight the default mode.
no_fin <- without_financial
map_region_risk(no_fin, "DE", benchmark = "unit_tilt_sector", mode = "worst_case", scenario = "NZ 2050", year = 2030) +
labs(title = "German map of high, medium and low proportions of the companies
that are found in one region.
© EuroGeographics for the administrative boundaries ")
#> Extracting data using giscoR package, please report issues on https://github.com/rOpenGov/giscoR/issues







