Skip to content

Testing lightweight LLMs (DeepSeek-R1, Mistral-7B) locally via LM Studio with Python API integration and benchmark notes.

Notifications You must be signed in to change notification settings

AdarshZolekar/Local-LLM-Experiments-1

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Local AI Experiments with LM Studio

This repository documents experiments running lightweight large language models (LLMs) locally using LM Studio.


Tools & Frameworks

  • LM Studio – Local GUI and inference server for GGUF models.

  • Models Tested:

    • DeepSeek-R1-Distill-Qwen-7B (Q4_K)
    • Mistral-7B-Instruct-v0.2 (Q4_K)
  • Python – For sending prompts via LM Studio local API.


Setup

  1. Install LM Studio from lmstudio.ai.

  2. Download desired GGUF models.

  3. Enable Local Inference Server:

    • Settings → Developer → Enable Local Inference Server

    • Default API endpoint: http://localhost:1234/v1


Usage Example (Python)

See scripts/run_deepseek.py and scripts/run_mistral.py for examples.


Experiments & Notes

Model Quantization RAM Usage Observations
DeepSeek-R1-Distill-Qwen-7B Q4_K ~7–8 GB Strong reasoning/math
Mistral-7B-Instruct-v0.2 Q4_K ~6–7 GB Fast & general-purpose

Next Steps

  • Test more models (Phi-3.5, Gemma-2B)
  • Benchmark token throughput
  • Explore llama.cpp for lower RAM setups

Keywords: LM Studio, DeepSeek-R1, Mistral, GGUF, Local AI, LLM and Python API.

About

Testing lightweight LLMs (DeepSeek-R1, Mistral-7B) locally via LM Studio with Python API integration and benchmark notes.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages