A local, privacy-preserving question-answering system for financial documents using FastAPI, sentence-transformers, and Ollama Mistral. The system extracts content from raw PDFs, performs semantic search over chunked embeddings, and returns precise answers with a clean HTML UI.
- FastAPI-based backend for real-time inference
 - PDF ingestion using 
pdfplumber - Semantic search using 
sentence-transformers - LLM integration using Ollama Mistral for local answer generation
 - Simple UI using HTML/CSS/JS (chat-style interface)
 - Fully offline and privacy-respecting
 
git clone https://github.com/Amaan-developpeur/FinancialQA-Assistant.git
cd FinancialQA-Assistant
python -m venv .venv
.\.venv\Scripts\activate
pip install -r requirements.txt
ollama run mistral
uvicorn app.main1:app --reload
Then open your browser and visit:
http://127.0.0.1:8000
financial-qa/
├── app/
│   ├── main.py               # Swagget.UI can be openned
     ├── main1.py             # FastAPI app entrypoint
│   ├── query_engine.py         # Embedding search logic
│   ├── templates/chat.html     # Jinja2-based UI
│   ├── static/                 # CSS & JS files
│   └── utils/
│       ├── local_generate.py   # LLM inference using Ollama
│       └── system_prompt.py    # System prompt builder
├── data/
├── scripts/                      
├── Images/                     # Screenshots for documentation
├── requirements.txt
├── .gitignore
└── README.md
This project is licensed under the MIT License.


