Agentic AI walkthrough for HDB resale analysis → SQL → Data → Charts → Insights.
-
Calling an LLM API
- Setting up OpenRotuer API, ensuring dependencies are installed
- 📄 File:
intro_to_tool_calling.py
-
Generate SQL query output by passing in DB Schema
- Instead of plaintext output, getting the LLM to give an SQL query
- 📄 File:
intro_to_tool_calling.py
-
Tool Time! Creating a tool to execute the above generated SQL query & give insights
- Tool:
execute_sql_query - 📄 File:
intro_to_tool_calling.py
- Tool:
-
Adding a Visualisation tool + Putting it all together!
- Add
execute_visualisation_codetool & create plotly visualisations - Combine DB results + chart + analysis
- 📄 Files:
final.py(Agent loop)app.py(Streamlit UI)
- Add
-
Dockerising & Deploying to Airbase
- Setting up Dockerfile
- Linking repo to Airbase
- Deploying to Airbase
git clone https://github.com/<your-org>/agentic-ai-demo.git
cd agentic-ai-demopython3 -m venv .venv
source .venv/bin/activatepip install -r requirements.txtCreate a .env file:
OPENROUTER_API_KEY=sk-your-key-herestreamlit run app.py👉 Go to http://localhost:8501
docker build -t agentic-ai-demo .
docker run -p 8501:8501 agentic-ai-demo