Skip to content

Hybrid WCGAN-ACGAN framework for balanced network intrusion detection on NSL-KDD and UNSW-NB15 datasets using XGBoost, Decision Trees, CNN, and AutoGluon classifiers

License

Notifications You must be signed in to change notification settings

Bharathyalagi/GAN-BASED-SYNTHETIC-DATA-GENERATION-IN-IDS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

51 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Hybrid GAN IDS

This repository contains implementations of GAN-based synthetic data generation and classifiers for intrusion detection using NSL-KDD and UNSW-NB15 datasets.

Folder Structure

  • CNN/ : CNN experiments for both datasets.
  • nsl-kdd/ : GAN + classifiers experiments for NSL-KDD dataset.
  • unsw-nb15/ : GAN + classifiers experiments for UNSW-NB15 dataset.

Refer to individual folder README.md files for dataset-specific instructions.

Dataset Links


πŸ“‚ Repository Structure

hybrid-gan-ids/
β”œβ”€β”€ CNN/
β”‚   β”œβ”€β”€ cnn.ipynb
β”‚   └── README.md
β”‚
β”œβ”€β”€ nsl-kdd/
β”‚   β”œβ”€β”€ acgan+decision-tree/
β”‚   β”œβ”€β”€ wcgan+decision-tree/
β”‚   β”œβ”€β”€ wcgan+xgboost/
β”‚   └── README.md
β”‚
β”œβ”€β”€ unsw-nb15/
β”‚   β”œβ”€β”€ acgan+decision-tree/
β”‚   β”œβ”€β”€ wcgan+decision-tree/
β”‚   β”œβ”€β”€ wcgan+xgboost/
β”‚   └── README.md
β”‚
└── README.md

License

This project is licensed under the MIT License - see the LICENSE file for details.


Note

This is a large project, so it might be confusing at first. Please check the README.md files in each folder carefully to understand the workflow and structure.

Thank you

About

Hybrid WCGAN-ACGAN framework for balanced network intrusion detection on NSL-KDD and UNSW-NB15 datasets using XGBoost, Decision Trees, CNN, and AutoGluon classifiers

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published