This project was developed and tested using the following environment:
- Ubuntu 18.04 (aarch64)
- NVIDIA L4T 32.7
- JetPack 4.6.4
- DeepStream 6.0.1
- Python 3.6
- EPC-r7000 (advantech)
- NVIDIA Jetson TX2
- USB Webcam
- CUDA 10.2
- TensorRT 8.2
- cuDNN 8.2
For this inference example, we use YOLOv3 (Darknet). The inference runs on the EPC's NVIDIA GPU, using an environment compatible with JetPack 4.6.
It's important to remember that, in JetPack 4.6, many modern frameworks (PyTorch, YOLOv8, etc.) do not have compatible versions for the aarch64 architecture, so we use Darknet, which is fully compatible and allows us to take advantage of CUDA acceleration.
sudo apt update
sudo apt install -y git make build-essential libopencv-dev
git clone https://github.com/AlexeyAB/darknet
cd darknet
sed -i 's/GPU=0/GPU=1/' Makefile
sed -i 's/CUDNN=0/CUDNN=1/' Makefile
sed -i 's/OPENCV=0/OPENCV=1/' Makefile
make -j4
wget https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg
wget https://pjreddie.com/media/files/yolov3-tiny.weights
./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights /dev/video0
jtop
