Skip to content

BloodyRose0714/AI-Agents-E-Commerce

Repository files navigation

E-commerce Calculator

Setup Instructions

  1. After opening the codespace, install the dependencies:
pip install -e .
  1. Configure the required environment variables:
export OPENAI_API_KEY=<your-openai-api-key>
export DATABASE_URL=<your-database-url>
  1. Run the application:
cd ecommerce_calculator
python main.py

Environment Variables

  • OPENAI_API_KEY: Your OpenAI API key for AI functionality
  • DATABASE_URL: Connection string for your database (format: postgresql://user:password@host:port/dbname)

Development

For local development, you can create a .env file in the root directory with the above environment variables.

Test Product IDs:

  • 985b030a-f6b0-47d9-98d3-98c3c7d35f06
  • d7d13480-fe01-4a2c-85f2-bcdee4c2a5b0
  • 4a5cfd0f-bda6-460b-a4b2-af5e608ced99

Enhancements

  • Support multiple agents
from typing import Dict, Any
from abc import ABC, abstractmethod

class Agent(ABC):
    """Base class for LLM agents"""
    def __init__(self, agent_id: str, capabilities: List[str]):
        self.agent_id = agent_id
        self.capabilities = capabilities
        self.metrics = AgentMetrics()

    @abstractmethod
    def process_request(self, request: Dict[str, Any]) -> Dict[str, Any]:
        """Process incoming requests using available tools"""
        pass

    @abstractmethod
    def validate_access(self, tool_name: str) -> bool:
        """Validate agent's access to requested tool"""
        pass
class AgentManager:
    """Manages multiple LLM agents and their tool access"""
    def __init__(self):
        self._agents: Dict[str, Agent] = {}
        self._tool_repository = ToolRepository()

    def register_agent(self, agent: Agent):
        """Register a new agent"""
        self._agents[agent.agent_id] = agent

    def route_request(self, agent_id: str, request: Dict[str, Any]) -> Dict[str, Any]:
        """Route request to appropriate agent"""
        agent = self._agents.get(agent_id)
        if not agent:
            raise ValueError(f"Unknown agent: {agent_id}")

        return agent.process_request(request)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published