CHromAtin iMmuno PrecipitAtion sequencinG aNalysis pipEline
View the full documentation website: https://ccbr.github.io/CHAMPAGNE
Champagne is installed on the Biowulf HPC. For installation in other execution environments, refer to the docs.
Champagne is available on Biowulf in the ccbrpipeliner
module.
You'll first need to start an interactive session, then load the module:
# start an interactive node
sinteractive --mem=2g --cpus-per-task=2 --gres=lscratch:200
# load the ccbrpipeliner module
module load ccbrpipeliner
Initialize and run champagne with test data:
# copy the champagne config files to your project directory.
# --output is optional and defaults to your current working directory.
champagne init --output /data/$USER/champagne_project
# preview the champagne jobs that will run with the test dataset
champagne run --output /data/$USER/champagne_project \
--mode local -profile test -preview
# launch a champagne run on slurm with the test dataset
champagne run --output /data/$USER/champagne_project \
--mode slurm -profile test
To run champagne on your own data, you'll need to create a sample sheet. Take a look at these examples:
- assets/samplesheet_test.csv - mix of single and paired end reads downloaded from github.
- assets/samplesheet_full_mm10.csv - single end reads on biowulf.
Once you've created a samplesheet with paths to your fastq files,
run champagne with the --input
option to specify the path to your sample sheet:
champagne run --output /data/$USER/champagne_project \
--mode slurm \
--input samplesheet.csv \
--genome hg38
You can specify workflow parameters via the command line or in a YAML file. Here's an example YAML file with some common parameters:
assets/params.yml
input: './assets/samplesheet_full_mm10.csv'
contrasts: './assets/contrasts_full_mm10.csv'
genome: mm10
run_gem: false
run_chipseeker: false
run_qc: true
You can then use these parameters with the -params-file
option:
champagne run --output /data/$USER/champagne_project \
--mode slurm \
-params-file assets/params.yml
View the full list of parameters in the documentation.
View the list of available reference genomes to see which genomes are pre-configured for use with champagne on biowulf. If you'd like to use a genome that's not already available, view the guide on preparing a custom reference genome.
If your experiment uses a spike-in control, you can specify the spike-in genome
with the --spike_genome
parameter:
champagne run --output /data/$USER/champagne_project \
--mode slurm \
--input samplesheet.csv \
--genome hg38 \
--spike_genome dmelr6.32 \
--deeptools_normalize_using None
View the spike-in docs for more information on how to use & customize spike-in controls.
Come across a bug? Open an issue and include a minimal reproducible example.
Have a question? Ask it in discussions.
Want to contribute to this project? Check out the contributing guidelines.
General Inquiries and Collaboration: Please contact the CCBR Pipeliner team at [email protected].
This repo was originally generated from the CCBR Nextflow Template. The template takes inspiration from nektool1 and the nf-core template. If you plan to contribute your pipeline to nf-core, don't use this template -- instead follow nf-core's instructions2.
Footnotes
-
instructions for nf-core pipelines https://nf-co.re/docs/contributing/tutorials/creating_with_nf_core ↩