🌊 🌀
Coastal ocean mesh generation from vector and raster GIS data.
Get a mesh up and running in minutes. For a full walkthrough, see 5. Basic Usage.
import numpy as np
import oceanmesh as om
# 1) Define a region (WGS84 example)
region = om.Region(extent=(-75.00, -70.00, 40.00, 42.00), crs=4326)
# Alternatively, define an arbitrary polygon extent (lon, lat vertices)
poly_vertices = np.array(
[
[-74.2, 40.4],
[-73.9, 40.4],
[-73.8, 40.7],
[-74.1, 40.8],
[-74.2, 40.4], # close polygon
]
)
poly_region = om.Region(extent=poly_vertices, crs=4326)
# 2) Build shoreline and signed distance function from a coastline shapefile
shore = om.Shoreline("path/to/coastline.shp", poly_region, min_edge_length=0.01)
sdf = om.signed_distance_function(shore)
# 3) Create a sizing function and generate the mesh
edge = om.distance_sizing_function(shore, rate=0.15)
points, cells = om.generate_mesh(sdf, edge)
# 4) Clean up common boundary issues
points, cells = om.make_mesh_boundaries_traversable(points, cells)
points, cells = om.delete_boundary_faces(points, cells, min_qual=0.15)- 1. Quick Start
- 2. Features
- 3. Installation
- 4. Support & Community
- 5. Basic Usage
- 6. Advanced Topics
- 7. Performance Optimization
- 8. Third-Party Code
- 9. Testing
- 10. Citation
- 11. License
- A Python package for the development of unstructured triangular meshes used in coastal ocean circulation modeling. The software integrates mesh generation directly with geophysical datasets such as topo-bathymetric rasters/digital elevation models and shapefiles representing coastal features. It provides pre- and post-processing tools to enable successful numerical simulation with the developed model.
- Automatically handles arbitrarily complex shoreline vector datasets and incorporates them into mesh generation.
- A variety of commonly used mesh size functions with simple, scriptable controls.
- Mesh checking and clean-up methods to avoid simulation problems.
The notes below refer to installation on platforms other than MS Windows. For Windows, see 3.2.
oceanmesh needs CGAL:
sudo apt install libcgal-devCGAL can also be installed with conda:
conda install -c conda-forge cgalAfter that, clone the repo and install/update with pip:
pip install -U -e .On some clusters/HPC in order to install CGAL, you may need to load/install gmp and mpfr. For example:
sudo apt install libmpfr-dev libgmp3-devPython on Windows can encounter DLL conflicts due to version incompatibilities among required packages. We provide install_cgal.bat to build a CGAL development distribution separately as a prerequisite.
Prerequisites to build CGAL using the provided batch file:
- Windows 10 or later
- Visual Studio with C++
- CMake
- Git
After successful installation of a CGAL development package, proceed via one of the two options below to generate a Python environment with OceanMesh installed.
performance-critical operations:
If you are using a conda-based Python distribution, then install_oceanmesh.bat should take care of everything, provided no package conflicts arise.
-
Point-in-polygon queries are implemented by :mod:
oceanmesh.geometry.point_in_polygonusing a pure-Python ray-casting backend with optional fast paths via Shapely and Matplotlib when available. When built, an optional Cython extension (:mod:oceanmesh.geometry.point_in_polygon_) accelerates the core ray-casting kernel and is enabled by default.Backend selection follows two environment variables:
OCEANMESH_INPOLY_METHODchooses among the Python backends ("raycasting","shapely","matplotlib"). When this is set, the corresponding backend is used and the Cython kernel is not invoked.OCEANMESH_INPOLY_ACCELcontrols whether the compiled kernel is considered whenOCEANMESH_INPOLY_METHODis not set to a recognised method name. By default (unset or non-falsey), OceanMesh will attempt to import and use the Cython kernel; if the extension is missing or fails at runtime, a warning is logged and the code gracefully falls back to the pure-Python implementation.
If you intend to run without acceleration (for example on a platform without a compiler toolchain), set
OCEANMESH_INPOLY_ACCEL=0to disable the compiled kernel and silence the warning. Otherwise, a warning is emitted to highlight that performance may be significantly degraded compared to the accelerated path.
Note: CMake is required by vcpkg to build CGAL dependencies, but is not used to build oceanmesh itself (which uses setuptools with pybind11).
To install from source for development and testing:
pip install -e .- Questions or problems? Post issues on GitHub or ask in Slack: https://join.slack.com/t/oceanmesh2d/shared_invite/zt-su1q3lh3-C_j6AIOQPrewqZnanhzN7g
- Contact: Dr. Keith Roberts ([email protected])
- Version information: oceanmesh uses versioneer.
python -c "import oceanmesh; print(oceanmesh.__version__)"
python setup.py versionLogging during script execution (default is suppressed):
import logging, sys
logging.basicConfig(stream=sys.stdout, level=logging.WARNING)
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)import oceanmesh as om
EPSG = 32619 # CRS (UTM19N here)
bbox = (-70.29637, -43.56508, -69.65537, 43.88338)
extent = om.Region(extent=bbox, crs=4326) # bbox given in WGS84
extent = extent.transform_to(EPSG) # transform to target CRS (UTM19N)
print(extent.bbox) # extents now in desired CRSShoreline vector datasets (e.g., shapefiles) and digital elevation models (DEMs) are used to construct mesh size and signed distance functions. The dataset download and heavy plotting examples are skipped in CI.
import zipfile
import requests
import oceanmesh as om
url = "http://www.soest.hawaii.edu/pwessel/gshhg/gshhg-shp-2.3.7.zip"
with open("gshhg-shp-2.3.7.zip", "wb") as f:
f.write(requests.get(url).content)
zipfile.ZipFile("gshhg-shp-2.3.7.zip").extractall("gshhg-shp-2.3.7")
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
EPSG = 4326
extent = om.Region(extent=(-75.000, -70.001, 40.0001, 41.9000), crs=EPSG)
shoreline = om.Shoreline(fname, extent, 0.01) # Preferred: pass RegionWhen working in projected CRSs (e.g., UTM), prefer passing a Region object so both bbox and CRS travel together.
import oceanmesh as om
EPSG = 32610 # UTM Zone 10N
extent = om.Region(extent=(xmin, xmax, ymin, ymax), crs=EPSG)
shore = om.Shoreline(fname, extent, min_edge_length=15) # carries CRS
shore = om.Shoreline(fname, extent.bbox, 15, crs=EPSG) # explicit CRS
# Wrong: bbox in UTM but default CRS=WGS84 (do NOT do this)
# shore = om.Shoreline(fname, extent.bbox, 15)Best practice: Pass a Region object to Shoreline instead of just a bbox to ensure CRS matches automatically.
# DEM usage (example dataset from datasets/EastCoast.nc)
import oceanmesh as om
dem = om.DEM("datasets/EastCoast.nc", crs=4326)
dem.plot(title="SRTM 30m", vmin=-10, vmax=10)import oceanmesh as om
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent = om.Region(extent=(-75.00, -70.001, 40.0001, 41.9000), crs=4326)
shoreline = om.Shoreline(fname, extent, 0.01)
sdf = om.signed_distance_function(shoreline)To flip the inside/outside definition:
sdf = om.signed_distance_function(shoreline, invert=True)All mesh size functions are defined on regular Cartesian grids. See the Grid class for details.
import oceanmesh as om
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent = om.Region(extent=(-75.00, -70.001, 40.0001, 41.9000), crs=4326)
shoreline = om.Shoreline(fname, extent, 0.01)
edge_length = om.distance_sizing_function(shoreline, rate=0.15)import oceanmesh as om
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent = om.Region(extent=(-75.00, -70.001, 40.0001, 41.9000), crs=4326)
shoreline = om.Shoreline(fname, extent, 0.01)
sdf = om.signed_distance_function(shoreline)
edge_length = om.feature_sizing_function(shoreline, sdf, max_edge_length=0.05)
edge_length = om.enforce_mesh_gradation(edge_length, gradation=0.15)import oceanmesh as om
fdem = "datasets/EastCoast.nc"
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent = om.Region(extent=(-74.3, -73.8, 40.3, 40.8), crs=4326)
dem = om.DEM(fdem, bbox=extent, crs=4326)
shoreline = om.Shoreline(fname, dem.bbox, 0.01)
sdf = om.signed_distance_function(shoreline)
edge1 = om.feature_sizing_function(shoreline, sdf, max_edge_length=0.05)
edge2 = om.wavelength_sizing_function(dem, wl=100, period=12.42 * 3600)
edge = om.enforce_mesh_gradation(om.compute_minimum([edge1, edge2]), gradation=0.15)import oceanmesh as om
fdem = "datasets/EastCoast.nc"
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent = om.Region(extent=(-74.4, -73.4, 40.2, 41.2), crs=4326)
dem = om.DEM(fdem, crs=4326)
shoreline = om.Shoreline(fname, extent, 0.0025)
sdf = om.signed_distance_function(shoreline)
edge_feat = om.feature_sizing_function(shoreline, sdf, max_edge_length=0.10, crs=4326)
edge_grad = om.bathymetric_gradient_sizing_function(
dem, slope_parameter=5.0, filter_quotient=50, min_edge_length=0.0025, max_edge_length=0.10, crs=4326
)
edge = om.enforce_mesh_gradation(om.compute_minimum([edge_feat, edge_grad]), gradation=0.15)points, cells = fix_mesh(points, cells)
points, cells = make_mesh_boundaries_traversable(points, cells)
points, cells = delete_faces_connected_to_one_face(points, cells)
points, cells = delete_boundary_faces(points, cells, min_qual=0.15)
points, cells = laplacian2(points, cells)Mesh generation uses the DistMesh algorithm and requires only a signed distance and a sizing function.
import meshio
import oceanmesh as om
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent = om.Region(extent=(-75.00, -70.001, 40.0001, 41.9000), crs=4326)
shore = om.Shoreline(fname, extent.bbox, 0.01)
edge = om.distance_sizing_function(shore, max_edge_length=0.05)
domain = om.signed_distance_function(shore)
points, cells = om.generate_mesh(domain, edge)
points, cells = om.make_mesh_boundaries_traversable(points, cells)
points, cells = om.delete_faces_connected_to_one_face(points, cells)
points, cells = om.delete_boundary_faces(points, cells, min_qual=0.15)
points, cells = om.laplacian2(points, cells)
meshio.write_points_cells("new_york.vtk", points, [("triangle", cells)], file_format="vtk")Areas of finer refinement can be incorporated seamlessly by using generate_multiscale_mesh with lists of signed distance and edge length functions. Transitions are blended automatically.
import numpy as np
import matplotlib.tri as tri
import matplotlib.gridspec as gridspec
import oceanmesh as om
fname = "gshhg-shp-2.3.7/GSHHS_shp/f/GSHHS_f_L1.shp"
extent1 = om.Region(extent=(-75.00, -70.001, 40.0001, 41.9000), crs=4326)
extent2 = om.Region(extent=np.array([[-73.95, 40.60], [-73.72, 40.65], [-73.95, 40.60]]), crs=4326)
s1 = om.Shoreline(fname, extent1.bbox, 0.01)
s2 = om.Shoreline(fname, extent2.bbox, 4.6e-4)
sdf1, sdf2 = om.signed_distance_function(s1), om.signed_distance_function(s2)
el1, el2 = om.distance_sizing_function(s1, max_edge_length=0.05), om.distance_sizing_function(s2)
points, cells = om.generate_multiscale_mesh([sdf1, sdf2], [el1, el2])Global meshes are defined in WGS84 but meshed in a stereographic projection. Regional refinement can be added as additional domains.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import matplotlib.gridspec as gridspec
import oceanmesh as om
from oceanmesh.region import to_lat_lon
fname_global_latlon = "tests/global/global_latlon.shp"
fname_global_stereo = "tests/global/global_stereo.shp"
global_region = om.Region(extent=(-180.0, 180.0, -89.0, 90.0), crs=4326)
shoreline_global_latlon = om.Shoreline(fname_global_latlon, global_region, 1.0)
sdf_global_latlon = om.signed_distance_function(shoreline_global_latlon)
edge_global = om.enforce_mesh_gradation(
om.compute_minimum([
om.distance_sizing_function(shoreline_global_latlon, rate=0.11),
om.feature_sizing_function(shoreline_global_latlon, sdf_global_latlon, max_edge_length=3.0),
]),
gradation=0.15,
stereo=True,
)
aus_region = om.Region(extent=(110.0, 160.0, -45.0, -10.0), crs=4326)
shoreline_regional = om.Shoreline(fname_global_latlon, aus_region, 0.25)
sdf_regional = om.signed_distance_function(shoreline_regional)
edge_regional = om.enforce_mesh_gradation(
om.compute_minimum([
om.distance_sizing_function(shoreline_regional, rate=0.13),
om.feature_sizing_function(shoreline_regional, sdf_regional, max_edge_length=1.5),
]),
gradation=0.12,
)
shoreline_global_stereo = om.Shoreline(fname_global_stereo, global_region, 1.0, stereo=True)
sdf_global_stereo = om.signed_distance_function(shoreline_global_stereo)
points, cells = om.generate_multiscale_mesh(
[sdf_global_stereo, sdf_regional],
[edge_global, edge_regional],
blend_width=1.0e6,
blend_max_iter=50,
max_iter=75,
)
The image shows the global mesh with a refined Australia region.
# Global mesh generation only (stereographic meshing)
import oceanmesh as om
from oceanmesh.region import to_lat_lon
fname = "tests/global/global_latlon.shp"
fname2 = "tests/global/global_stereo.shp"
region = om.Region(extent=(-180.00, 180.00, -89.00, 90.00), crs=4326)
shore = om.Shoreline(fname, region.bbox, 0.5)
edge = om.distance_sizing_function(shore, rate=0.11)
domain = om.signed_distance_function(om.Shoreline(fname2, region.bbox, 0.5, stereo=True))
points, cells = om.generate_mesh(domain, edge, stereo=True, max_iter=100)OceanMesh uses efficient, GPL-compatible geometry backends for performance-critical operations:
- Point-in-polygon queries use the new
oceanmesh.geometry.inpoly2implementation, which can automatically take advantage of Shapely prepared geometries or Matplotlib path operations when those libraries are available, falling back to a portable pure-Python ray-casting algorithm otherwise. - Delaunay triangulation is provided by a pure-Python Bowyer–Watson implementation with an optional Cython-accelerated kernel, enabled automatically when built.
No special extras or build flags are required to enable these optimizations; the fastest available backend is selected at runtime based on the installed dependencies.
OceanMesh relies on a number of well-established open-source
dependencies (see setup.cfg for the full list), but does not
currently vendor any third-party geometry libraries. Earlier releases
included a vendored copy of inpoly-python; this has been fully
replaced by the native GPL-compatible implementation in
oceanmesh.geometry.inpoly2.
To run the oceanmesh unit tests (and turn off plots), check out this repository and run tox.
[1] - Roberts, K. J., Pringle, W. J., and Westerink, J. J., 2019.
OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling,
Geoscientific Model Development, 12, 1847-1868. https://doi.org/10.5194/gmd-12-1847-2019.
This software is published under the GPLv3 license





