Skip to content

ChinmayK0607/nanosft

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Nanosft

A minimal supervised fine-tuning (SFT) setup for QnA-style dialogue models, building upon Karpathy’s nanoGPT.
This project demonstrates how to implement prompt masking and a chat-style template for fine-tuning small GPT models on conversational datasets such as Databricks Dolly-15k.


Features

  • QnA prompt–response formatting (User: / Assistant: template)
  • Label masking to train only on assistant responses
  • Simple PyTorch + Datasets data pipeline
  • Configurable logging with Weights & Biases
  • AMP training support for faster convergence

Usage

python nanosft.py \
  --dataset databricks/databricks-dolly-15k \
  --hf_model_type gpt2 \
  --batch_size 8 \
  --grad_accum 4 \
  --epochs 1 \
  --lr 3e-5 \
  --use_amp

Future Work

  • Optimization for larger-scale runs (gradient checkpointing, mixed precision)
  • Multi-GPU and distributed training support
  • LoRA-based fine-tuning for efficient parameter updates

Note: currently only a educational version, not prod ready

About

minimal implementation of sft with gpt2-124M

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages