Skip to content

Adding quartic prior #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Apr 29, 2025
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion mlcg/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,14 @@
from .radial_basis import GaussianBasis, ExpNormalBasis
from .cutoff import CosineCutoff, IdentityCutoff
from .losses import ForceMSE, ForceRMSE, Loss
from .prior import Harmonic, HarmonicAngles, HarmonicBonds, Repulsion, Dihedral
from .prior import (
Harmonic,
HarmonicAngles,
HarmonicBonds,
Repulsion,
Dihedral,
Quartic,
)
from .mlp import MLP, TypesMLP
from .attention import ExactAttention, FavorAttention, Nonlocalinteractionblock
from .pyg_forward_compatibility import (
Expand Down
230 changes: 230 additions & 0 deletions mlcg/nn/prior.py
Original file line number Diff line number Diff line change
Expand Up @@ -1065,3 +1065,233 @@ def from_user(*args):
def neighbor_list(topology) -> None:
nl = topology.neighbor_list(Dihedral.name)
return {Dihedral.name: nl}


class Quartic(torch.nn.Module, _Prior):
r"""
Prior that helps in fitting tighter bimodal distributions
using the following energy ansatz.


.. math:

V(x) = a*(x-xa)**2 + b*(x-xb)**3 + c*(x-xc)**4 + d

N.B. the linear term is missing
Especially useful for CA angles, to restrain them
avoiding exploration toward pi
"""

_order_map = {
"bonds": 2,
"angles": 3,
"dihedrals": 4,
}
_compute_map = {
"bonds": compute_distances,
"angles": compute_angles,
"dihedrals": compute_torsions,
}
_neighbor_list_map = {
"bonds": "bonds",
"angles": "angles",
"dihedrals": "dihedrals",
}

def __init__(
self, statistics, name, order: Optional[int] = None, n_degs: int = 4
) -> None:
super(Quartic, self).__init__()
keys = torch.tensor(list(statistics.keys()), dtype=torch.long)
self.allowed_interaction_keys = list(statistics.keys())
self.name = name
if order is not None:
self.order = order
elif name in Quartic._order_map.keys():
self.order = Quartic._order_map[self.name]
else:
raise ValueError(f"Uncompatible order {order}")
self.neighbor_list_type = Quartic._neighbor_list_map[self.name]

unique_types = torch.unique(keys.flatten())
assert unique_types.min() >= 0
max_type = unique_types.max()
sizes = tuple([max_type + 1 for _ in range(self.order)])

self.n_degs = n_degs
self.k_names = ["k_" + str(ii) for ii in range(2, self.n_degs + 1)]
self.x0_names = ["x0_" + str(ii) for ii in range(2, self.n_degs + 1)]

k = torch.zeros(self.n_degs - 1, *sizes)
x0 = torch.zeros(self.n_degs - 1, *sizes)
v_0 = torch.zeros(*sizes)

for key in statistics.keys():
for ii in range(self.n_degs - 1):
k_name = self.k_names[ii]
x0_name = self.x0_names[ii]
k[ii][key] = statistics[key]["ks"][k_name]
x0[ii][key] = statistics[key]["x0s"][x0_name]
v_0[key] = statistics[key]["v_0"]
self.register_buffer("ks", k)
self.register_buffer("v_0", v_0)
self.register_buffer("x0s", x0)

@staticmethod
def compute_features(pos, mapping, target):
compute_map_type = Quartic._neighbor_list_map[target]
return Quartic._compute_map[compute_map_type](pos, mapping)

def data2features(self, data):
mapping = data.neighbor_list[self.name]["index_mapping"]
return Quartic.compute_features(data.pos, mapping, self.name)

def data2parameters(self, data):
mapping = data.neighbor_list[self.name]["index_mapping"]
interaction_types = [
data.atom_types[mapping[ii]] for ii in range(self.order)
]
# the parameters have shape n_features x n_degs-1 since
# linear term is missing
ks = torch.vstack(
[self.ks[ii][interaction_types] for ii in range(self.n_degs - 1)]
).t()

x0s = torch.vstack(
[self.x0s[ii][interaction_types] for ii in range(self.n_degs - 1)]
).t()
v_0s = self.v_0[interaction_types].t()
return {"ks": ks, "x0s": x0s, "v_0s": v_0s}

def forward(self, data):
mapping_batch = data.neighbor_list[self.name]["mapping_batch"]
features = self.data2features(data).flatten()
params = self.data2parameters(data)
V0s = params["v_0s"].t()
ks = params["ks"].t()
x0s = params["x0s"].t()
y = Quartic.compute(
features,
ks,
V0s,
x0s,
)
y = scatter(y, mapping_batch, dim=0, reduce="sum")
data.out[self.name] = {"energy": y}
return data

@staticmethod
def compute(
x: torch.Tensor, ks: torch.Tensor, V0: torch.Tensor, x0s: torch.Tensor
):
"""Quartic potential interaction with missing linear term.

.. math:

V(r) = V0 + \sum_{n=2}^{4} k_n (x-x_n)^n

"""
V = 0
for i in range(3):
V += ks[i] * (x - x0s[i]) ** (i + 2)

V += V0
return V

@staticmethod
def _quartic_model(x, a, b, c, d, xa, xb, xc):
return a * (x - xa) ** 2 + b * (x - xb) ** 3 + c * (x - xc) ** 4 + d

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A deg 4 polynomial p(x) is uniquely caracterized by 5 numbers: a_0, .. a_4 such that p(x) = sum_{k=0}^4 a_k * x^k. Your degree 4 polynomial uses 7 parameters in order to keep this shape of p(x) = sum_{k=2}^4 b_k *(x_0^{(k)} x)^k. Isn't the fit then ill posed?

At some point I tried to use an expression similar to what you have now and found it problematic because of this redundancy of parameters.

@staticmethod
def _init_quartic_parameters(n_degs):
"""
Helper method for guessing initial parameter values
Not used for now
"""
ks = [1.0 for _ in range(n_degs - 1)]
x0s = [0.0 for _ in range(n_degs - 1)]
V0 = -1.0
p0 = [V0]
p0.extend(ks)
p0.extend(x0s)
return p0

@staticmethod
def _init_quartic_parameter_dict(n_degs):
"""Helper method for initializing the parameter dictionary"""
stat = {"ks": {}, "x0s": {}, "v_0": 0.0}
k_names = ["k_" + str(ii) for ii in range(2, n_degs + 1)]
x0_names = ["x0_" + str(ii) for ii in range(2, n_degs + 1)]
for ii in range(n_degs - 1):
k_name = k_names[ii]
x0_name = x0_names[ii]
stat["ks"][k_name] = {}
stat["x0s"][x0_name] = {}
return stat

@staticmethod
def _make_quartic_dict(stat, popt, n_degs):
"""Helper method for constructing a fitted parameter dictionary"""
stat["v_0"] = popt[0]
k_names = sorted(list(stat["ks"].keys()))
x0_names = sorted(list(stat["x0s"].keys()))
for ii in range(n_degs - 1):
k_name = k_names[ii]
x0_name = x0_names[ii]
stat["ks"][k_name] = popt[ii]
stat["x0s"][x0_name] = popt[ii + n_degs]

return stat

@staticmethod
def fit_quartic_from_potential_estimates(
bin_centers_nz: torch.Tensor,
dG_nz: torch.Tensor,
**kwargs,
):
"""
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You need to make a PR also to mlcg-tk because we need to call also the fitting function from there.


Parameters
----------
bin_centers_nz:
Bin centers over which the fit is carried out
dG_nz:
The free energy values correspinding to the bin centers

Returns
-------
Statistics dictionary with fitted quartic parameters
"""
n_degs = 4

integral = torch.tensor(
float(trapezoid(dG_nz.cpu().numpy(), bin_centers_nz.cpu().numpy()))
)

mask = torch.abs(dG_nz) > 1e-4 * torch.abs(integral)
try:
stat = Quartic._init_quartic_parameter_dict(n_degs)
popt, _ = curve_fit(
Quartic._quartic_model,
bin_centers_nz.cpu().numpy()[mask],
dG_nz.cpu().numpy()[mask],
p0=[1, 0, 0, torch.argmin(dG_nz[mask]), 0, 0, 0],
bounds=(
(0, 0, 0, -np.inf, -np.pi, -np.pi, -np.pi),
(np.inf, np.inf, np.inf, np.inf, np.pi, np.pi, np.pi),
),
maxfev=5000,
)
stat = Quartic._make_quartic_dict(stat, popt, n_degs)
except:
print(f"failed to fit potential estimate for the prior Quartic")
stat = Quartic._init_quartic_parameter_dict(n_degs)
k_names = sorted(list(stat["ks"].keys()))
x_0_names = sorted(list(stat["x0s"].keys()))
for ii in range(n_degs - 1):
k1_name = k_names[ii]
k2_name = x_0_names[ii]
stat["ks"][k1_name] = torch.tensor(float("nan"))
stat["x0s"][k2_name] = torch.tensor(float("nan"))

return stat