This simulation is a fork from the original prp-simulation extending it by the temporal prediction, thus being able to simulate spatio-temporal prediction models.
- geolife-data: location of the raw Geolife Data
- geolife-data-transformed: populated by the me.mbe.prp.TransformGeolifemain method in the test module
- src code
- main: code of the framework, algorithms, etc.
- algorithms
- base: helper methods
- core: framework
- data
- metrics
- network
- nodes
 
- test: code for the evaluation
 
- main: code of the framework, algorithms, etc.
- stats-out: evaluation results saved here
- analysis: python files for analysis and plotting of the results
- Clone repository
- Setup gradle
- Copy the Geolife Data into the geolife-data folder (copy the whole Datafolder).
- Run the me.mbe.prp.TransformGeolifemain method in the test module
- Run the evaluations in me.mbe.prp.geolife.Evaluation
- Results can be found in the stats-outdirectory (The results folder already contains the results files, in order to create new ones, delete the existing ones.)
- Baseline
- me.mbe.algorithms.Alg000: Store data on all nodes at all times.
- me.mbe.algorithms.Alg001: Store data only on closest node when application active.
- me.mbe.algorithms.nextnodepred.Alg004: Variable Order Markov Model.
- me.mbe.algorithms.nextnodepred.Alg012: Fusion Multi Order Markov Model.
 
- T-VOMM
- me.mbe.algorithms.nextnodepred.AlgT04: Temporal Variable Order Markov Model: Not mentioned in the thesis
 
- T-FOMM
- me.mbe.algorithms.nextnodepred.AlgT012: Temporal Fusion Multi Order Markov Model with multiple temporal models: Percentiles (PCTL), Temporal Discretization (TD) and Holt Winter’s Exponential Smoothing (HWES)
 
The not-finished complex network implementation can be found in the complex_network branch.
- Baseline
- me.mbe.algorithms.Alg000: Store data on all nodes at all times.
- me.mbe.algorithms.Alg001: Store data only on closest node when application active.
 
- Next Node Prediction
- me.mbe.algorithms.nextnodepred.Alg003: (Multi Order) Markov Model.
- me.mbe.algorithms.nextnodepred.Alg004: Variable Order Markov Model.
- me.mbe.algorithms.nextnodepred.Alg008: Store also on some neighboring nodes: Not mentioned in the original thesis
- me.mbe.algorithms.nextnodepred.Alg012: Fusion Multi Order Markov Model.
 
- Startup Prediction
- me.mbe.algorithms.startuppred.Alg011: Store for short pauses.
- me.mbe.algorithms.startuppred.Alg013: Do not store anything after shutdown: Used together with the algorithms for next node prediction: Not mentioned explicitly in the original thesis
- me.mbe.algorithms.startuppred.Alg014: Store if short pause predicted.
- me.mbe.algorithms.startuppred.Alg015: Clustering of startup times for long pauses: Not mentioned explicitly in the original thesis, just as a side note.