ezlocalai is an easy set up artificial intelligence server that allows you to easily run multimodal artificial intelligence from your computer. It is designed to be as easy as possible to get started with running local models. It automatically handles downloading the model of your choice and configuring the server based on your CPU, RAM, and GPU specifications. It also includes OpenAI Style endpoints for easy integration with other applications using ezlocalai as an OpenAI API proxy with any model. Additional functionality is built in for voice cloning text to speech and a voice to text for easy voice communication as well as image generation entirely offline after the initial setup.
- Python 3.10+
- Docker Desktop (Windows or Mac)
- CUDA Toolkit (May Need 12.4) (NVIDIA GPU only)
- ROCm (AMD GPU only - Linux)
Additional Linux Prerequisites
- Docker
- Docker Compose
- NVIDIA Container Toolkit (NVIDIA GPU only)
- ROCm (AMD GPU only - Radeon RX 6000/7000/9000 series, Radeon PRO, and Ryzen APUs)
Install the CLI and start ezlocalai with a single command:
pip install ezlocalai
ezlocalai startIt will take several minutes to download the models on the first run. Once running, access the API at http://localhost:8091.
# Start with defaults (auto-detects GPU, uses Qwen3-VL-4B)
ezlocalai start
# Start with a specific model
ezlocalai start --model unsloth/gemma-3-4b-it-GGUF
# Start with custom options
ezlocalai start --model unsloth/Qwen3-VL-4B-Instruct-GGUF \
--uri http://localhost:8091 \
--api-key my-secret-key \
--ngrok <your-ngrok-token>
# Other commands
ezlocalai stop # Stop the container
ezlocalai restart # Restart the container
ezlocalai status # Check if running and show configuration
ezlocalai logs # Show container logs (use -f to follow)
ezlocalai update # Pull/rebuild latest images
# Send prompts directly from the CLI
ezlocalai prompt "Hello, world!"
ezlocalai prompt "What's in this image?" -image ./photo.jpg
ezlocalai prompt "Explain quantum computing" -m unsloth/Qwen3-VL-4B-Instruct-GGUF -temp 0.7| Option | Default | Description |
|---|---|---|
--model, -m |
unsloth/Qwen3-VL-4B-Instruct-GGUF |
HuggingFace GGUF model(s), comma-separated |
--uri |
http://localhost:8091 |
Server URL |
--api-key |
None | API key for authentication |
--ngrok |
None | ngrok token for public URL |
| Option | Default | Description |
|---|---|---|
-m, --model |
Auto-detected | Model to use for the prompt |
-temp, --temperature |
Model default | Temperature for response generation (0.0-2.0) |
-tp, --top-p |
Model default | Top-p (nucleus) sampling parameter (0.0-1.0) |
-image, --image |
None | Path to local image file or URL to include with prompt |
-stats, --stats |
Off | Show statistics (tokens, speed, timing) after response |
For additional options (Whisper, image model, etc.), edit ~/.ezlocalai/.env:
All data is stored in ~/.ezlocalai/:
| Directory | Contents |
|---|---|
~/.ezlocalai/data/models/ |
Downloaded GGUF model files |
~/.ezlocalai/data/hf/ |
HuggingFace cache |
~/.ezlocalai/data/voices/ |
Voice cloning samples |
~/.ezlocalai/data/outputs/ |
Generated images/audio |
~/.ezlocalai/.env |
Your configuration |
Models persist across container updates - you won't re-download them when updating the CLI or rebuilding the CUDA image.
Performance tested on Intel i9-12900KS + RTX 4090 (24GB):
| Model | Size | Speed | Notes |
|---|---|---|---|
| Qwen3-VL-4B | 4B | ~210 tok/s | Vision-capable, great for chat |
| Qwen3-Coder-30B | 30B (MoE) | ~65 tok/s | Coding model, hot-swappable |
Both models pre-calibrate at startup and hot-swap in ~1 second.
ezlocalai supports a distributed fallback system where multiple instances can fall back to each other when local resources (VRAM/RAM) are exhausted, or fall back to any OpenAI-compatible API. This enables:
- Load balancing: When one machine is busy, requests automatically route to another
- Redundancy: If one server is overloaded, the fallback handles requests
- Resource optimization: Each machine handles what it can, forwarding the rest
- Hybrid deployment: Mix local ezlocalai instances with cloud APIs
Set these environment variables in your .env file or pass them to the container:
# Fallback server URL - can be another ezlocalai instance OR any OpenAI-compatible API
FALLBACK_SERVER=http://192.168.1.100:8091 # Another ezlocalai instance
# Or use a cloud provider:
# FALLBACK_SERVER=https://api.openai.com/v1
# Authentication for the fallback server
FALLBACK_API_KEY=your-api-key
# Optional: Override model for OpenAI-compatible fallback (pass-through by default)
# If not set, the originally requested model is passed through to the fallback server
# FALLBACK_MODEL=gpt-4o-mini
# Combined memory threshold (VRAM + RAM) in GB - fallback triggers when below this
# Models can offload to system RAM, so combined memory is more accurate than VRAM alone
FALLBACK_MEMORY_THRESHOLD=8.0The system automatically detects whether FALLBACK_SERVER points to another ezlocalai instance or an OpenAI-compatible API by checking for the /v1/resources endpoint. If it's another ezlocalai server, full endpoint forwarding is used (preserving the original request). Otherwise, it falls back to standard OpenAI API calls, passing through the originally requested model (or using FALLBACK_MODEL if set as an override).
Machine A (Primary with RTX 4090):
EZLOCALAI_URL=http://0.0.0.0:8091
EZLOCALAI_API_KEY=shared-key
FALLBACK_SERVER=http://machine-b:8091
FALLBACK_API_KEY=shared-keyMachine B (Fallback with RTX 3080):
EZLOCALAI_URL=http://0.0.0.0:8091
EZLOCALAI_API_KEY=shared-key
FALLBACK_SERVER=http://machine-a:8091
FALLBACK_API_KEY=shared-keyBoth machines fall back to each other - creating a resilient two-node cluster.
Run a local ezlocalai with OpenAI as the fallback:
EZLOCALAI_URL=http://0.0.0.0:8091
FALLBACK_SERVER=https://api.openai.com/v1
FALLBACK_API_KEY=sk-your-openai-key
FALLBACK_MODEL=gpt-4o-miniCheck the fallback status via API:
# Get resource status including fallback info
curl http://localhost:8091/v1/resources
# Check fallback availability and models
curl http://localhost:8091/v1/fallback/statusWhen fallback is triggered to another ezlocalai instance, these endpoints are automatically forwarded:
/v1/chat/completions- Chat completions (including streaming)/v1/completions- Text completions/v1/embeddings- Text embeddings/v1/audio/transcriptions- Speech-to-text/v1/audio/speech- Text-to-speech/v1/images/generations- Image generation
For OpenAI-compatible APIs, only chat completions and embeddings are forwarded.
OpenAI Style endpoints available at http://<YOUR LOCAL IP ADDRESS>:8091/v1/ by default. Documentation can be accessed at that http://localhost:8091 when the server is running.
import requests
response = requests.post(
"http://localhost:8091/v1/chat/completions",
headers={"Authorization": "Bearer your-api-key"}, # Change this if you configured an API key
json={
"model": "unsloth/Qwen3-VL-4B-Instruct-GGUF",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "Describe each stage of this image."},
{
"type": "image_url",
"image_url": {
"url": "https://www.visualwatermark.com/images/add-text-to-photos/add-text-to-image-3.webp"
},
},
],
},
],
"max_tokens": 8192,
"temperature": 0.7,
"top_p": 0.8,
},
)
print(response.json()["choices"][0]["message"]["content"])For examples on how to use the server to communicate with the models, see the Examples Jupyter Notebook once the server is running. We also have an example to use in Google Colab.
graph TD
A[app.py] --> B[FASTAPI]
B --> C[Pipes]
C --> D[LLM]
C --> E[STT]
C --> F[CTTS]
C --> G[IMG]
D --> H[llama_cpp]
D --> I[tiktoken]
D --> J[torch]
E --> K[faster_whisper]
E --> L[pyaudio]
E --> M[webrtcvad]
E --> N[pydub]
F --> O[TTS]
F --> P[torchaudio]
G --> Q[diffusers]
Q --> J
A --> R[Uvicorn]
R --> S[ASGI Server]
A --> T[API Endpoint: /v1/completions]
T --> U[Pipes.get_response]
U --> V{completion_type}
V -->|completion| W[LLM.completion]
V -->|chat| X[LLM.chat]
X --> Y[LLM.generate]
W --> Y
Y --> Z[LLM.create_completion]
Z --> AA[Return response]
AA --> AB{stream}
AB -->|True| AC[StreamingResponse]
AB -->|False| AD[JSON response]
U --> AE[Audio transcription]
AE --> AF{audio_format}
AF -->|Exists| AG[Transcribe audio]
AG --> E
AF -->|None| AH[Skip transcription]
U --> AI[Audio generation]
AI --> AJ{voice}
AJ -->|Exists| AK[Generate audio]
AK --> F
AK --> AL{stream}
AL -->|True| AM[StreamingResponse]
AL -->|False| AN[JSON response with audio URL]
AJ -->|None| AO[Skip audio generation]
U --> AP[Image generation]
AP --> AQ{IMG enabled}
AQ -->|True| AR[Generate image]
AR --> G
AR --> AS[Append image URL to response]
AQ -->|False| AT[Skip image generation]
A --> AU[API Endpoint: /v1/chat/completions]
AU --> U
A --> AV[API Endpoint: /v1/embeddings]
AV --> AW[LLM.embedding]
AW --> AX[LLM.create_embedding]
AX --> AY[Return embedding]
A --> AZ[API Endpoint: /v1/audio/transcriptions]
AZ --> BA[STT.transcribe_audio]
BA --> BB[Return transcription]
A --> BC[API Endpoint: /v1/audio/generation]
BC --> BD[CTTS.generate]
BD --> BE[Return audio URL or base64 audio]
A --> BF[API Endpoint: /v1/models]
BF --> BG[LLM.models]
BG --> BH[Return available models]
A --> BI[CORS Middleware]
BJ[.env] --> BK[Environment Variables]
BK --> A
BL[setup.py] --> BM[ezlocalai package]
BM --> BN[LLM]
BM --> BO[STT]
BM --> BP[CTTS]
BM --> BQ[IMG]
A --> BR[API Key Verification]
BR --> BS[verify_api_key]
A --> BT[Static Files]
BT --> BU[API Endpoint: /outputs]
A --> BV[Ngrok]
BV --> BW[Public URL]